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Abstract: This paper examines a social contractarian model in which an actor cooper-
ates by mimicry; that is, cooperates just in case there is majority cooperation in his or
her vicinity. A computer simulation is developed to study the relation between initial
and final proportions of such cooperators, as well as to chart the population dynamics
themselves. The model turns out to be non-linear; it embodies a quintessentially
chaotic threshold. The simulation also yields other unforeseen results, revealing a
“geometry of defection” that unites defecting cells into robust molecular formations
which persist within overall cooperative domains, or which under certain conditions
undermine cooperativeness entirely. The model thus sheds some light on the structural
dimension of mimicry that underlies social communication, conflict and its resolution.

I. Cascading Mimicry

C ompliance with social contracts of a generic or implicit kind is often
achieved neither by deontological precept nor by teleological expecta-
tion; rather, by a kind of cascade effect that proceeds from an ignobly superficial
but empirically observable form of mimicry.! While it is tempting to attribute
high-minded dutifulness, or at least cold-blooded prudence, to those who
voluntarily abide by implied contracts,? empirical evidence suggests that an
individual’s compliance, or lack thereof, often depends solely upon a critical
threshold of compliance, or lack thereof, in his immediate vicinity.?

1f one studies the behaviors of social animals that associate in herds,
one notes that the phenomenon of stampeding entails precisely this kind of
cascade effect. If just a few animals display panic, their behavior can quickly
pervade the herd, which may then stampede even if most of its members have
not identified, and are not responding to, the initial threat itself. Humans are
also capable of panicking and stampeding in just this way, through mimick-
ing the behaviors of conspecifics in their immediate vicinity. Although
cascading mimicry is ostensibly a survival mechanism of gregarious animals,
a stampede can also kill more conspecifics than the stampede’s trigger (e.g. a
predator or a lightning bolt) would have. The cascade effect is also patently
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observable, and of obvious survival value, in schools of fishes and flocks of
birds, whose dynamic formations maintain rigid internal metrics along with
malleable external envelopes. It appears that a few key individuals initiate
changes of direction of motion, and the entire school or flock responds by
rapidly cascading mimicry.

Evidence of this cascade effect is also inferable in its absence, through
recognition of a threshold below which it never escalates. Consider this
empirical social question: how do we describe the behavior of stealing mer-
chandise from stores without paying for it? If relatively few persons engage
intermittently in such behavior, we call it “shoplifting”; if relatively many
engage in it simultaneously, we call it “looting.” At what quantitative thresh-
old does shoplifting cascade into looting? Conduct, if you will, a
thought-experiment meant roughly to approximate this threshold. Imagine
that you are shopping in a large store, fully intending to pay for the items
you select. If you notice one person shoplifting, would you begin to shop-
lift? Probably not. If you notice one person in ten shoplifting, would you
begin to shoplift? Again, probably not. But what if one half of your fellow-
shoppers appeared to be shoplifting? Would you not then consider something
amiss, and wonder if you should shoplift too? What if nine out of ten per-
sons were shoplifting? At this point, the store is apparently being looted,
and you would probably either quit the premises empty-handed or else
become a looter yourself. My point is that one does not observe a smooth
transition between shoplifting and looting, because the cascade effect is non-
linear. Empirically, one witnesses either sporadic shoplifting (normally) or
ubiquitous looting (abnormally). Escalation between these states is contin-
gent on a certain threshold being exceeded.

Similarly, in traversing a residential neighborhood one rarely sees a few
broken windows, a few scraps of litter, or a few insignias of graffiti: neigh-
borhoods tend either to be either pristine in their neatness, or profane in
their decay * Intermediate states of messiness, if not swiftly reduced to neat-
ness, can escalate rapidly into decay. Breakage invites more breakage; litter,
more litter; graffiti, more graffiti.

The phenomenon of cascading mimicry has been studied by econo-
mists,’ sociologists,® criminologists,” psychologists® and physicians,® in
particular manifestations that include vandalism, littering, graffiti-spraying,
teenage pregnancy, epidemiology, homicide, and suicide. The phenomenon
apparently also applies to fashions, fads, and self-fulfilling prophecies.!® In
a given manifestation, the particular threshold beyond which intermittent
occurrence rapidly escalates to epidemic frequency is called by Malcolm
Gladwell “the tipping point.” Gladwell first encountered the phenomenon
as a child, when he attempted to pour ketchup from a bottle, and incorrectly

70

but understandably assumed a linear causal relation between his tapping on
the inverted bottle and the flowing of its contents. His father summarized
the actual outcome—and the non-linear cascade effect it represented—with
a ditty: “Tomato ketchup in a bottle—None will come and then the lot’ll.”!!

Characteristic of the cascade effect in social contexts is its external com-
pulsion on the individual agent, and the asymmetry of decision theory along
the spectrum of relative frequency. At the sporadic end, people ostensibly
deliberate and choose, according to internal predispositions of the ethical or
psychological variety, whether to shop or shoplift. But past the tipping point
and toward the epidemic end, there is no sophisticated internal decision
principle governing a choice between shopping or looting. People loot
because sufficient numbers around them are looting—evidently, people who
might not shoplift in normal circumstances might loot in abnormal ones.

This phenomenon is compassed, if not anticipated, by standard Hob-
besian contractarianism, in which we emerge from a state of nature by, among
other things, renouncing our “natural right” to all things. Recall that Hobbe-
sian natural right is:

the liberty each man hath, to use his own power, as he will himself, for the
preservation of his own nature; that is to say, of his own life; and conse-
quently, of doing any thing, which in his own judgment, and reason, he shall
conceive to be the aptest means thereunto.'?

This would apply to shoplifting which, if everyone applied it, would become
looting. We renounce our natural right to steal or loot because, according to
Hobbes, it is more commodious, and therefore advantageous, for us to do
s0.'? The egoist’s long-term expected utilities are maximized by cooperation, not
defection, provided that one vital condition is met. Hobbes’s second law of
nature (meant to effect egress from his state of nature) specifies that proviso:

that a man be willing, when others are so too, as far-forth, as for peace, and
defence of himself he shall think it necessary, to lay down this right to all
things; and be contented with so much liberty against other men, as he would
allow other men against himself.*

This Hobbesian conception, in other words, describes social contrac-
tual mimicry: an actor refrains from an action, thereby renouncing an
immediate gain in favor of a longer-term expectation, neither because he
maintains a high-minded principle proscribing such an action, nor because
he has calculated the expected utility of self-restraint, but mainly because he
observes or infers that others are refraining from it too. While philosophical
scholars have recognized that Hobbes’s second law entails a formulation of the
N-person Prisoner’s Dilemma,'” and moreover have studied the “free-riding”
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phenomenon that obtains when a few defectors take advantage of near-
ubiquitous cooperation,'® cascading mimicry itself remains relativel

underexamined mathematically and computationally. To shed more com u>j
tational light on this effect, I have developed a simple model that simulatefit

IIl. A Computer Model

On a rectangular two-dimensional grid, each cell has exactly eight contigu-
ous neighbors: one above, one below, one left, one right, and one on eagch
corner. These eight neighbors comprise the “vicinity” of ’a given cell. Cells
along the edges are by definition deemed contiguous with cells along .o 0-
site edges; thus the grid is a two-dimensional representation of a torus lei)g:Jed
both longitudinally and transversely then pasted flat. Hence each ané ever
cell has exactly eight neighbors in its vicinity. The extent of our model is Z
square of 100 x 100 cells, producing a population of 10,000 cells
The model has two variables: the initial proportion of coop'erators in
the o.verall population, and the threshold proportion of cooperative neigh-
bo.rs.m a given cell’s vicinity sufficient to “elicit” that cell’s cooperation %’ia
mimicry. I have elected to study primarily the effects of varying initial pro-
portions of cooperators, while holding vicinity thresholds constant ?his
paper discusses chiefly the results of that study. Secondarily, I conducted
§1mulations showing the evolution of proportionality as a fun;tion of var
ing thresholds; that result is mentioned later in the paper. i
Trials are conducted by running a program written in GW-BASIC, whose
annotated source code is provided in Appendix One. For each trial the
program requires three inputs: the initial proportion of cooperators iI”l the
overau population, the threshold fraction of cooperators in a cell’s vicinit
sufficient to elicit its cooperation, and the number of generations to be f
puted before the program halts (i.e. the length of the trial). i
propolrriiél'rlle( 1r)11(t)1fa(1: generation, the 'grid is segded with the selected initial
s de}; nalt.oop-erators‘ This is acvcomphshed by sampling each cell in
T g) _[}}l;lg 1t'a;11 cooperator with probability p (or a defector with
s gree;? .d fe grid is displayed as a square matrix of cells: coopera-
o mom,[ore egt.ors},1 rfd. (The ”mamces appear rectangular on the
sl ierz? m;.f? snaPshoF reprgductions provided herein owing
g mitpi)al enlon. i .ergntlals in horizontal versus vertical display.)
A Ceugis eratlcindls in place, subsequent generations are spawned
i .Compu[edsa;n[ie : ran.domly, and the fraction of cooperators in its
¢ AR St.a[e is1s r?ctlodn equals or exceeds the pre-selected thresh-
i Y assigned to thaF cell; otherwise, a defective state is
gnments are naturally independent of the current state of
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the sampled cell; they are dependent only upon the overall composition of
the cell’s vicinity. A generation is defined as 10,000 such random samplings
over the whole grid.

Here 1 interject a note intended to allay any concerns raised by aficio-
nados of programming or other sharp methodologists who may wonder why
a generation consists of 10,000 random samplings, as opposed to a deter-
ministic sampling of each of the 10,000 cells. For the record, I essayed both
methods, and the outcomes were indiscernible if not identical. Given that
equivalent data obtains from either method, random sampling is
computationally far less taxing than deterministic sampling. In the deter-
ministic case, the computer needs to retain in memory a complete map of
the n' generation while computing and building the map of the (n+1)* gen-
eration; then it has to replace the map of the nt" with that of the (n+1)* in
order to compute the (n+1)™, while at the same time reading and writing
appropriate data to update the visual display. This is highly inefficient, espe-
cially over a large number of generations. It also interrupts the continuity of
the visual display for the experimenter because with each new generation
the previous matrix is erased from the screen and the next matrix discretely
generated, row-by-row. In the random case, the computer needs to retain
and display only one map, which it continuously modifies (as necessary)
one cell at a time. This is highly efficient for the computer, and produces an
additional benefit for the experimenter: the visual display itself is continu-
ous, and scintillates pleasingly in real time. Thus the cascade effects and overall
population dynamics are continuously observable as the generations elapse.

The experimental results reported herein are predicated upon an assump-
tion of democratic minimalism; namely, that with respect to mimicry, people
will generally behave as the majority in their vicinity behaves. Thus, for a
selected cell to cooperate, the threshold fraction of cooperators in its vicinity
must exceed one-half. Since each cell has exactly eight neighbors, at least
five of them must be in a cooperative state to elicit cooperation from the
selected cell. A heuristic justification for this threshold is plain: in the kind
of social situations represented by this model, people will generally mimic
the majority, because doing so affords a fortuitous convergence of instinc-
tual gregariousness (or herd mentality, or social contractarianism) and
Hobbesian prudence (or psychological egoism, or enlightened self-interest).

If a clear majority of shoppers purchases goods, the individual in their midst
is likely to purchase too. If a clear majority loots the shop, the same indi-
vidual in their midst is likely to loot as well. However, if the herd splits into
two equal fractions, one of which shops while the other shoplifts, the indi-
vidual in their midst has no clear majority behavior to mimic. Nor is he
being asked to cast a “deciding vote” that would in any way compel more
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uniform behavior in the aggregate. His condition resembles Buridan’s ass
among a herd, half of which heads toward one bale, half toward the other.
I interpret this state of affairs as the cutting point of Hobbes’s second law, at
which majority mimicry is rendered impossible de facto, and in which case
individual prudence trumps social contractarianism de jure.

There is also a formal decision-theoretic justification for this location
of the cutting point. The generic Prisoner’s Dilemma is a conflict between
two principles of choice, each leading to a different outcome. Since defec-
tion strongly dominates cooperation, the dominance principle prescribes
defection, which is individually rational but which, if chosen by both pris-
oners, leads to a mutually undesirable Nash equilibrium. The principle of
maximizing expected utilities prescribes cooperation, which is collectively
rational and which, if chosen by both prisoners, results in a mutually desir-
able Pareto-optimal outcome. However, the expected utility calculus prescribés
cooperation if and only if the subjective (or a priori) probability that the
other prisoner cooperates or defects, conditional on one’s cooperation or
defection respectively, is greater than one-half. If that probability is less than
one half, the calculus prescribes defection, the two decision principles con-
verge, and the dilemma vanishes. If that probability equals exactly one-half
then the expected utilities of cooperating and defecting are equal, and col-,
lective rationality’s prescription is mute. One then reverts or defaults to
individual rationality (i.e. the dominance principle) and defection. For
models such as Newcomb’s problem!” and the Tragedy of the Commons,®
although subjective probability is transposed to empirical frequency, there ’is
no change in the prescriptive cutting point for cooperation. Our model, in turn
imports empirical frequency into a kind of autological Prisoner’s Dilemma ir;
which .theA payoff for doing what most others do is doing what most otl';ers
?oor.m '1;‘1;1(51,e ::110221;2,{ ij;l:tiof‘;etshiﬁsx;ng our en'qpir.ical c.utting poipt at one-half. A

rgument is given in Appendix Two.

lIl. Characteristic Trials

Flgl.ng the threshold cooperative fraction as described above, and varying the
1mt'1al proportion of cooperators in the overall population, one observes, to
begin \yith, that most empirical trials unfold in one of two di,vergem directic;ns.

: First, consider a trial whose initial proportion of cooperators is 60%.
As figure 1 shows, after one generation, this proportion has increased slightly
to 61%. After 10 generations, however, it has fallen to 38% (figure 2); after
25 generations, to 17% (figure 3); and after 50 generations, to 3% (figure 4).
A few more generations will suffice to eliminate the remaining cooperators
and leave the population in a steady state of unanimous defection. The firs£
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lesson learned from this trial is that an initial majority of cooperators—in
this case 60%—does not guarantee that any cooperation will prevail.

Second, consider a trial whose initial proportion of cooperators is 75%.
After one generation, it is still 75% (figure 5). However, by 18 generations it
has risen to 96% (figure 6). While this population has also attained a steady
state, it contains a 4% minority of permanent defectors. These defectors are
clustered in geometric conformations that remain impervious to change. Each
of the red cells in these clusters has at least four red neighbors, and therefore
remains red (i.e. defective) when sampled in subsequent generations. Simi-
larly, each of the green cells surrounding these clusters has at least five green
neighbors, and therefore remains green (i.e. cooperative) when sampled in
subsequent generations. The net (geo)graphical effect is the persistence of
small islands of defectors in a large sea of cooperators. These cooperators are
social contractarians and even though they constitute an overwhelming major-
ity, the defectors have managed to form “contract-resistant” structures.

IV. Typology and Taxonomy of Defecting Structures

A closer examination of these contract-resistant structures, notwithstanding
their varying masses and orientations, reveals a definitive and generalizable
property of their stable geometries. To explicate this property, we first define
the “envelope” of these structures, as a function of their perimeters, in the
following way. Where the perimeter of a defecting structure is horizontal or
vertical (i.e. where the perimeter cells are aligned in rows or columns), the
envelope of that part of the structure is the horizontal or vertical boundary
between defecting and cooperating cells. Where the perimeter of a defecting
structure is step-wise diagonal (i.e. where the perimeter cells form a facet of
the structure neither horizontally nor vertically aligned in the plane), the
envelope of that part of the perimeter is the shortest straight line that can be
drawn between the adjacent horizontal and vertical facets, which does not
transect any defecting cells.

This is much simpler to depict than to describe. Figures 7 and 8 show
the envelopes of two stable defecting structures. The envelope of a stable
defecting structure is evidently a polygon with the characteristic feature that
all its internal angles measure exactly 135 degrees. It must also possess a
sufficient mass in order to survive. For example, the envelope of a 5-cell
structure with a defecting cell in the center and defecting neighbors north,
south, east and west satisfies the angular condition, but this structure’s cells
cannot resist change to cooperative states. Since a perimeter defector in this
structure has only three defecting neighbors, it will cooperate as soon as it is
sampled. Thus any such sampling will immediately reduce the center cell’s




four defecting neighbors 10 a lesser number, and they too will cooperate
when sampled. One f{inds empirically that the smallest stable defecting mass
is the 12-cell structure depicted in figure 6. (We leave the proof that this is
a critical mass to a mathematician.) This stable type ol delecting structure
has an infinitely large taxonomy, restricted in practice only by the size of the
grid. Many different stable conformations, exhibiting various kinds ol sym-
melries, can be observed in the figures provided herein, drawn from
experimental trials. All possible stable structures should be describable by
some inductive formula, or be able to be generated by some algorithm, which
might draw upon graph theory, lattice, theory or group theory. We leave this
exercise to a mathematician,

Il a defecting structure's geometry is such that its envelope contains an
internal angle other than 135 degrees, then it is unstable and belongs to one
of three unstable types. Each type engenders a distinctly different process, A
type 1 unstable defecting structure has either unviable conformation or insuf-
ficient mass. Since each of its peripheral cells changes to a cooperative state
when sampled, the structure eventually vanishes. Figure 9 depicts some such
structures. A type 2 unstable defecting structure has sufficient mass and
viahle conformation; it sheds peripheral defecting cells until its envelope
becomes stable. Figure 10 depicts one such structure, A type 3 unstable
defecting structure also has sufficient mass and viable conformation; it
accrues defecting cells and thus grows until its envelope becomes stable.
Figure 11 depicts one such structure.

V. Collisions and Chaos

Type 3 unstable structures can also give rise to a phenomenon widely
observed during experimental computer trials, which 1 call “collision.” As a
lype 3 structure grows toward stability, it may collide with other defecting
structures in the population. Any such collision, even with a stable struc-
ture, will result in the formation of a new and larger unstable defecting
mass of Lype 3, which once again will grow toward a stable conformation.
Depending on the initial proportion of defectors in the population, and
thus on the density of stable defecting structures lying-within the eventual
sul-:ale envelope of a type 3 growth, collisions can ultimately consume the
entire population of cooperators.

This transpires in figures 1-4. Figure 1 shows a prolileration of type 2
and 3 defecting structures in the first generation (39% of the population),
which by the tenth generation {figure 2) have collided and coalesced into a
Sprawling. yet aggregate, lype 3 mass (62% of the population), which will
shortly.and inevitably monopolize the entire grid.
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1 use the word “inevitably™ in a pa nicularfy guarded sense because while
it is true of the aforementioned experimental run, it is not generally true
that all type 3 collisions result in the inevitable extinction of cooperators.
Given the methodological programming equivalencies hitherto assumed, it
is clear that each experimental trial consists of an initial probabilistic phase,
wherein the grid is randomly seeded with the selected proportions of coop-
erators and defectors, and a protracted deterministic phase, wherein the
population is driven to some kind of stasis by the algorithm of mimicry.

Three kinds of static outcomes (i.e., population states that cannot change
in subsequent generations) are possible in this model. First, one can arrive
al a static pepulation composed purely of defectors (as in the aforemen-
tioned trial). Second, one can arrive at a static population composed purely
of cooperators, Third, one can arrive at a static pepulation composed of
stable delecting structures configured on a stable ground of cooperators-
“islands™ of defection in a “sea” of cooperation (as depicted in figure 6).
Which of these outcomes obtains depends almost strictly on the selected
proportions of defectors and cooperators in the initial generation,

Empirically, the initial threshold that determines an end-state of pure
defection is any proportion less than 2/3 cooperators. If this initial propor-
tion is chosen, then it is only a matter of time (i.e. number of generations)
before 1ype 3 collisions eliminate all the cooperators. The initial thresheld
that determines an end-state of pure cooperation is any proportion greater
than 88% cooperators. If the initial proportion of cooperators (1) is selected
within this range (667 < I < 88), the end-state will be mixed. At the upper
threshold, when I = .88, the end-state will be either purely cooperative, or
will contain at most one 12-cell defecting structure, and will require no
more than 15 generations Lo autain stasis. In the later case, the defectors'
proportionaliy will have dropped by two orders of magnitude, from .12 1o
0012, At the lower threshold, when [ = 667, the population dynamics are
variable and unprediciable.

This latter process is illustrated in figures 12-14. In figure 12, afier 10
generations of a trial in which the initial proportion of cooperators was 67%,
the current proportion has risen to 70%. Note, however, the 1wo (unstable)
type 3 masses of defectors in the lower right quadrant that are going to col-
lide. In figure 13, by generation 20, these masses have collided, and have
formed an aggregate type 3 mass that will collide in turn with other stable
delecting structures. The proportion of cooperators has dropped to 66%. In
figure 14, the population has attained stasis by generation 175, The propor-

" uion of cooperators is 53%; defectors, 47%. The large stable defecting structure

that has coalesced out of several type 3 collisions came very close o colliding
with two additional smaller structures, which would have precipitated an
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eventual stable state of pure defection. That was averted merely by the fortu-
itous initial positions of a few defecting cells, in which a slight variation in
the probabilistic initial state could lead to a significant difference in the
deterministic end state. Since this is precisely the definition of chaos,'® the
model is unquestionably chaotic at the initial threshold proportion of 66%
cooperators. In Gladwell’s terminology, this is the model’s tipping point.

Figure 15 shows the dynamic contour of this entire family of simula-
tions, which fixes the threshold of cooperative mimicry at 5/8 while varying
initial proportions of cooperators. One can see the differential rates at which
initial proportions of cooperators attain eventual stasis, either through
extinction by defectors, monopolization of defectors, or co-existence with
defectors. Given initial proportions of cooperators less than .667, all popu-
lations eventually evolve to a state of pure defection. Given initial proportions
of cooperators greater than .667, all populations rapidly evolve to a state of
either pure cooperation, or overwhelming majority cooperation.

Figure 16 shows the dynamic contour of simulations conducted at the
tipping point, or chaotic threshold, of .667. Here the possibilities range from
eventual stable states of pure defection to stable states of mixed cooperation
and defection, with proportions of cooperators varying from 0% to 70%.

V1. Sensitivity to Cooperative Threshold

If one wishes to study the other parameter, namely cooperative threshold,
one can compare the effects of varying it against a fixed initial proportion of
cooperators. In Hobbesian terms, this means increasing the diffidence of the
igdividual actor, and hence requiring that he observe a relatively larger frac-
tlc?n of cooperators in his vicinity in order that his cooperation be elicited by
rrgmicry. In our model, suppose we now require that six, seven, or even
eight neighbors cooperate in order to elicit the cooperation of a given cell.
What initial proportions of cooperators do we need under these new condi-
tions in order for cooperation to prevail or survive? The model responds
drastically to such variations, and the results do not augur particularly well
for utopians. If the “diffidence factor” is increased by just one increment,
Sugh that a selected cell now requires six cooperative neighbors (i.e. a 75%
majgrity in its vicinity) to cooperate itself, the geometry of defection becomes
malignantly cancerous. Empirically, we find that any initial proportion of
cooperators less than 97% cannot sustain itself under these conditions in

Which any small contiguous mass of five or more defecting cells grows rap-
idly and annihilates all cooperators on the grid.

The Geometry of Defection: Cascading Mimicry and Contract-Resistant Structures

VII. Conclusions

The model reveals that a stable geometry appears to underlie the sociology of
defective (i.e., anti-contractarian) behaviors. Although biological, psycho-
logical, sociological, criminological, political, and economic explanations
can be brought to bear in accounting for behaviors such as shoplifting, the
behavior itself persists, notwithstanding such explanations and despite pre-
ventive or corrective measures. The geometric properties of the defective
structures modeled herein, as well as the thresholds required to sustain them,
may inform our understanding of the persistence of certain social behaviors,
and thus contribute to the prevention of their escalation via cascading mimicry.

It is also interesting that awareness of this model may itself become a
determining factor in social choice. A friend and colleague for whom I ran
the computer simulation was, initially unknown to me, deliberating whether
to send her daughter to a good public school or a good private one. The
quality of education in the private school was known to be somewhat better,
but the financial costs were known to be very much higher. The mother was
unsure whether drastically higher costs justified somewhat better education,
that is, until she witnessed my computer simulation. As she observed the
formation and growth of stable defecting structures where initial propor-
tions of cooperators were too low, she suddenly blurted out “That’s it! I'm
sending my daughter to private school.” She concluded that the anti-
contractarian behaviors she worried her daughter might mimic would be
less prevalent in a more monied population. Indeed, if teenage social behav-
jor can be characterized as an inevitable series of episodes of cascading
mimicry, then it makes sense to attempt to influence the behavior itself, or at
least to limit the range and frequency of undesirable behaviors in the teenage
peer population. This in turn might be accomplished by deselecting one
population and selecting another—provided that one has the means. Where
one cannot change one’s population wholesale, one reverts to the William
Bratton expedient of attempting to increase cooperativeness in the given
population via conspicuous policing?® so that the threshold for cascading
mimicry is not approached.

Socially, however, the asymmetry of anti-contractarian behavior per-
sists: while one can usually prevent looting, one can apparently never eradicate
shoplifting. The geometry of this asymmetry is amply illustrated by the model,
whose contract-resistant structures may prove immune to social engineering
and impervious to civil persuasion.

Lou Marinoff, The City College of New York
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Appendix One: Annotated Source Code (GW-BASIC)
for Computer Simulations

10 INPUT “PROBABILITY, Q-FACTOR, NUMBER”;P,Q,NUM *inputs initial
cooperative proportion, index that determines cooperative threshold for each
cell, number of generations

20 KEY OFF: SCREEN 8: CLS *initializes display

40 C=2: D=4: E= (1+Q)/2 *defines cell colors, and computes cooperative threshold
100 DIM A(101,101) *defines population array

105 RANDOMIZE TIMER

110 FOR J=1 TO 100: FOR K=1 TO 100 *this “for” loop computes initial population
120 IF RND < P THEN A(J,K)=1: N=N+1

130 NEXT K: NEXT ]

140 GOSUB 500 *completes torus; i.e. wraps edges of the grid

150 GOSUB 700 *displays initial grid

160 FOR Z=1 TO NUM *this “for” loop computes subsequent generations and
displays data

165 LOCATE 5,78: PRINT “GEN”: LOCATE 6,77: PRINT USING “####",Z

170 LOCATE 8,79: PRINT “%C”: LOCATE 9,78: PRINT USING “###”;N/100
175 LOCATE 11,79: PRINT “%D": LOCATE 12,78: PRINT USING “###”:100-(N/100)
180 N=0 )

200 FOR Y=1 TO 10000 *this “for” loop picks cells to be sampled

210 J= INT(RND*100)+1: K=INT(RND*100)+1

220 GOSUB 600 *determines whether a sampled cell cooperates or defects
230 NEXT Y: NEXT Z

260 END *halts program when trial is completed

500 A(0,0)=A(100,100): A(0,101)=A(100,1): A(101,0)=A(1,100):
A(101,101)=A(1,1)

510 FOR J=1 TO 100

520 A(0J)=A(100]): A(101,))=A(1)): A(J,0)=A(J,100): A(J,101)=A(J,1)
530 NEXT

540 RETURN

600 F=A(J-1,K-1)+A(-1,K)+A(J-1,K+1)+A(J,K-1)+A(J ., K+1)+A(J+1,K-
D+A(J+1,K)+A(J+1,K+1)

630 IF F/8 > E THEN ICIRCLE (J*6,K*2),1,C: PAINT (J*6,K*2),C: A(J;K)=1:
N=N+1: ELSE CIRCLE (J*6,K*2),1,D: PAINT (J*6,K*2),D: A(J,K)=0

640 IF J=1 OR K=1 OR J=100 OR K=100 THEN GOSUB 500

80
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680 RETURN

700 FOR J=1 TO 100: FOR K=1 TO 100
710 IF A(J,K)=0 THEN COL=D ELSE COL=C
720 CIRCLE (J*6,K*2),1,COL

730 PAINT (J*6,K*2),COL

740 NEXT K: NEXT ]

750 RETURN

800 FOR J=1 TO 100: FOR K=1 TO 100
810 INPUT#1, A: A(J,K)=A

820 NEXT: NEXT

830 RETURN

Appendix Two: Conditional Probabilistic Threshold of
Cooperation in the PD

The Prisoner’s Dilemma payoff matrix is standardly represented as follows:

P, cooperates P, defects
Pl cooperates R,R BT
o defects S PP

where T > R > P > S, in utiles.
T means “temptation to defect”; R, “reward for mutual cooperation”; P,

“punishment for mutual defection”; S, “sucker’s payoff.”

Adopting the usual notation for conditional probabilization, p(c/C)

means “the probability that P, (prisoner 1) cooperates conditional on P.’s
(prisoner 2s) cooperation,” and so forth. Then one writes P.'s expected utili-

ties as follows.

Expected utility of cooperation: EUC = p(c/C)R + p(d/C)S.
Expected utility of defection: EUD = p(c/D)T + (d/D)P.
Assuming complete probabilistic dependence, p(c/C) = p(d/D) = 1 and

p(d/C) = p(¢/D) = 0. Hence EUC = R and EUD = P. Since R > P, the calculus
prescribes cooperation.

Assuming partial probabilistic dependence, let p(c/C) = p(d/D) = x

and p(d/C) = p(c¢/D) = 1-x. Then P,’s expected utilities are as follows.

EUC = xR + (1-x)S
EUD = (1-x)T +xP

For cooperation, we require that EUC > EUD, or
(R-P/(T-S) > (1/x)-1
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Since T > R and P > S, the left side is necessarily less than unity. There-
fore, the inequality cannot possibly hold unless x is greater than 1/2 (Q ED.)
Note that a celebrated case obtains if we constrain S=0 and T=R+P
These are the payoffs for Newcomb’s problem, and the same result obtains: thé
calculus prescribes that the player choose box two only, just in case the deﬁon’s
observed relative frequency of correct predictions is greater than 1/2. Note also
that David Lewis got this taxonomy wrong: while a Newcomb pr;)blem is a
Prisoner’s Dilemma, the converse does not hold; a Prisoner’s Dilemma is not
necessarily a Newcomb problem.?!
| In fine, .t}.le calculus prescribes that P, cooperate just in case the condi-
tional probability that P, cooperates is greater than 1/2. Newcomb’s problem
transposes an assumed conditional probability into an observed empirical
f'requency, without affecting the calculus itself. Making a similar transposi-
tion to our N-player model, a given agent cooperates just in case the obseI;ved
proportion of cooperators in his immediate vicinity is greater than 1/2. Thi
details the formal justification for the said assumption in our model i
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