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The Failure of Success: Intrafamilial
Exploitation in the Prisoner’s Dilemma

Louis Marinoff

1. Introduction

A recent n-pair computer tournament for the repeated Prisoner’s
Dilemma (Marinoff 1992) amplifies and extends Axelrod’s (1980a,
1980b) results, and demonstrates the relative robustness of co-operative
maximization of expected utilities. For empirical and analytical pur-
poses, the twenty competing strategies in the tournament are grouped
into five “families,” whose respective members share either common
program structures, or similar conceptual functions. The five families
are: the probabilistic family, the tit-for-tat family, the maximization
family, the optimization family, and the hybrid family. Individual strat-
egies or entire families can be selectively “bred” to exhibit (or to
exclude) particular traits, or combinations of traits.

MAC, the most co-operatively-weighted member of the maximiza-
tion family, is the most robust strategy in the tournament. MAC plays
randomly during the first one hundred moves of each thousand-move
game, with a co-operative weighting of %io. It records the joint out-
comes of the first hundred moves in an “event matrix,” from which it
computes its expected utility of co-operation (EUC), and of defection
(EUD), from move 101 onward. The tournament payoff matrix, the
maximizer’s event matrix, and the expected utilities to which these
matrices give rise are displayed in Figure 1.

MAC updates its event matrix after every move, and maximizes its
expected utilities accordingly. That is to say, on its n”* move (where
100 < n = 1000), MAC either co-operates or defects according to
whichever of its expected utilities is the greater, based upon the previ-
ous n—1 moves.

MAC has three siblings in the tournament: MAE, MEU, and MAD.
These siblings’ program structures are identical to MAC’s, but their
respective co-operative weightings for their hundred random moves
are %, %4, and Yi0. A maximization family member’s robustness in the
tournament increases strictly with its initial co-operativeness. In the
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Column Player

c d
— (33) (0,5)
Player p (5,0) (1,1)

C, ¢ denote co-operation; D, d denote defection.

Opponent
¢ d
X
Maximizing ¥
Strategy p Y 7

W = frequency of (C, ¢); X = frequency of (C, d);
Y = frequency of (D, c); Z = frequency of (D, d);
expected utility of co-operation = 3W/(W + X)

expected utility of defection = (5Y + Z)/(Y + Z)

Figure 1: Prisoner’s Dilemma payoff matrix and event matrix.

overall standings, out of twenty strategies, MAC placed first; MAE,
third; MEU; eighth; MAD, tenth. Like its siblings, MAC is neither nice
(where niceness means never defecting first) nor rude (where rudeness
means always defecting first); rather, it is nide (where nideness means
indeterminacy with respect to primacy of defection). And like its sib-
lings, MAC is both provocable and exploitive. But unlike its siblings,
MAC is initially co-operative enough to attain perpetual mutual co-
operation with other provocable yet forgiving strategies, such as TFT
(tit-for-tat). Thus MAC can become nice. These attributes, among oth-
ers, account for MAC’s success in the environment under discussion.
The tournament reveals a number of interesting performance char-
acteristics of the maximization strategies, but also exposes an ironic
deficiency in their intrafamilial encounters: members of this family
often fail to recognize one another, and their twins, in competition.
While the random phase of its play permits a maximization strategy to
“learn” about its opponent’s responses by constructing an event matrix
of joint outcomes, a pair of competing maximization strategies can
“misconstrue” one another as random strategies, on the basis of their
respective hundred-move event matrix profiles. Such cases of mistaken
identity can result in perpetual mutual defection from move 101
onward. Pure defection is the optimal strategy against a random
player, and as such is prescribed by the maximization calculus.
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Figure 2 (reprinted from Marinoff 1992, p. 214) illustrates this gen-
eral deficiency in intrafamilial maximization performance,’ and also
raises several perplexing questions. First, given that all members of
this family experience sharp decreases between their average tourna-
ment scores and average intrafamilial scores, why is it that the magni-
tudes of the differences do not correspond to the order of increasing
initial co-operativeness? From greatest to smallest, the strategic order
of difference is: MAC, MAD, MAE, MEU (while the corresponding
order of initial co-operativeness is MAC, MAE, ME U, MAD). Next,
within the family itself, the order of success — MAE, MEU, MAC,
MAD - is again altered with respect to initial co-operativeness. The
second-most co-operative strategy finishes first within the family; the
third-most co-operative strategy, second; the most co-operative
strategy, third. Why does this unexpected order obtain? Only in com-
petition against MAD, the least co-operative strategy, are the other
strategies exploited in strict order of their increasing initial co-opera-
tiveness. Why? Finally, in competition against respective twins, the
most successful pair is MAE-MAE (averaging 2594 points per game),
followed by MEU-MEU (averaging 2384 points per game). But the
MAC-MAC twins, which are weighted far more co-operatively than
the others, average only 1807 points per game. Why does MAC's over-
whelming probability of co-operation during the first 100 moves (%o,
as opposed to % for MAE and ¥: for MEU) result in a relatively poor
performance between MAC-MAC twins? This is the most surprising
and counter-intuitive result of the tournament.

2. Normally Distributed Scores

In order to appreciate what takes place when a maximization family
member encounters a sibling, or a twin, one must recognize a strategic
property peculiar to this family; namely, its members’ sequential use of
probabilistic, then deterministic algorithms. Thus, one observes two
different phases in a maximization strategy’s play: first, its construc-
tion of the initial event matrix for 100 moves; second, its calculation of
expected utilities (and updating of the event matrix) for the subse-
quent 900 moves. But when maximization family members encounter

MAC MAE MEU MAD Interfamilial Tournament

Average Average
MAC 1807 1849 1741 971 1592 2645
MAE 2123 2594 2356 987 2015 2503
MEU 1887 2396 2384 1003 1918 2362
MAD 1332 1266 1181 1029 1202 2086

Figure 2: The maximization family — interfamilial competition.
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one another, their play takes on a reflected aspect, wherein certain
symmetries, as well as asymmetries, become apparent.

One can identify five different kinds of algorithmic function, in the
tournament environment: predetermined, purely probabilistic, purely
deterministic, mixed probabilistic and deterministic, and sequential
probabilistic and deterministic (see Marinoff 1992 for a detailed
description of each strategic agent.) If two pre-determined and /or
deterministic strategies are paired in a sequence of games, the scores of
the given pair obviously do not vary from one game to another. If a
probabilistic (or mixed probabilistic and deterministic) strategy is
paired with any strategy other than a sequential strategy in a sequence
of games, the scores of the given pair vary according to a normal dis-
tribution, in which the mean score approaches the most probable score
as the number of games increases. When a maximization strategy
meets a strategy that uses a mixed probabilistic and deterministic algo-
rithm, the former’s scores tend to be highly concentrated; the latter’s
normally distributed. The maximization family members’ scores
against one another, however, are neither concentrated nor distributed
normally, with one noteworthy exception. In consequence, their aver-
age scores do not, as a rule, approach their most probable scores as the
number of games increases.

Let the exception to the rule, which occurs in games involving
MAD, be considered first. The extreme case of this exception obtains
when MAD plays itself. Recall that during its first 100 moves, MAD
co-operates randomly with probability "i0. Thus, the a priori probabi-
listic outcomes for a MAD-MAD pair are: p(C,c) = Yio0; p(C,d) = p(D,c)
= %o0; p(D,d) = %00. So after 100 moves, the most probable event
matrix contains entries W = 1; X = Y = 9; Z = 81, with associated
expected utilities EUIC = 0.3, EUD = 1.4, and the score tied at 129. The
deterministic play that ensues from this matrix, from moves 101 to
1000, consists of 900 consecutive mutual defections. The game ends
with the score tied at 1029. Since this score is a deterministic end-
product of the most probable event matrix, it is the most probable
score. Empirically, after five hundred games, MAD’s average score
was found to be 1029. The scores themselves appear to be distributed
normally.

3. Non-Normally Distributed Scores

Next, consider an encounter between the MEU-MEU pair. Since MEU
co-operates with probability % during its first 100 moves, then the
MEU-MEU pair has equiprobable outcomes during this phase: p(C,¢c) =
p(C,d) = p(D,c) = p(D,d) = Y. Thus, after 100 moves, the most probable
event matrix has equal entries: W = X = Y = Z = 25, with associated
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expected utilities EUC = 1.499, EUD = 2,999, and the score tied at 225.
The deterministic phase of their encounter proceeds as follows. One-
hundred-and-fifty consecutive mutual defections obtain between
moves 101 to 250, with a concomitant steady decrease in the value of
EUD.' By move 251, the value of EUD is driven below that of EUC, and
750 consecutive mutual co-operations ensue. After 1000 moves, the
score is tied at 2625. Again, it is the most probable score.

Empirically, however, after 500 games of MEU versus MEU, the
average score is found to be 2384. This is substantially less than the
most probable value. The cause of the discrepancy is revealed in a his-
togram showing the distribution of scores for 500 games of MEU ver-
sus MEU. Figure 3 displays a non-normal distribution, with a minor
prominence in the 1100-1200 point range, and a skewed distribution
across the middle and upper ranges. The peak of the skewed distribu-
tion indeed coincides with the a priori most probable score, in the 2600
2700 point range. But the minor feature at the low end of the range,
along with the overall skewness, diminishes the average score.

Next, consider an encounter between the MAE-MAE pair. Since
MAE co-operates with probability %7 during its first 100 moves, the
MAE-MAE pairs’ a priori probabilistic outcomes are: p(C,c) = *%9;
p(CAd) = p(D,c) = Wag; p(D,d) = Ya9. Thus, after 100 moves, the most
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Figure 3: MEU versus MEU. Histogram of scores for 500 games. MEU's average score: 2384.
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probable event matrix has these entries: W = 50 X=Y=20;Z=8
The associated expected utilities are EUC = 2.159, EUD = 3.879, and
the score is tied at 256. The deterministic phase of their encounter pro-
ceeds as follows. Forty-one mutual defections take place between
moves 101 and 141, followed by 859 mutual co-operations. After 1000
moves, the score is tied at 2882 points. Again, this represents the most
probable score.

Empirically, however, after 500 games of MAE versus MAE, the aver-
age score is found to be 2594 points. Again, a histogram (Figure 4)
reveals the cause of the discrepancy between the most probable and the
average scores. Figure 4 displays a non-normal distribution. While the
most frequent scores by far occur in the 2800-2900 point range, which
is the range of the most probable score, the skew of the distribution
towards the lower ranges diminishes the average score by some 250
points. Other features of increasing prominence appear in the 1900~
2000, 23002400, and 2600-2700 point ranges.

Finally, consider an encounter between the MAC-MAC pair. Since
MAC co-operates with probability %o during its first 100 moves, the
MAC-MAC pairs’ a priori probabilistic outcomes are: p(Cc) = 8o
p(C.d) = p(D,c) = %oo; p(D,d) = Yioo. Thus, after 100 moves, the most
probable event matrix has these entries: W = 81; X = Y = 9;Z=1.The
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Figure 4: MAE versus MAE. Histogram of scores for 500 games. MAE's average score: 2594,
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associated expected utilities are EUC = 2.699, EUD = 4.599, and the
score is tied at 288. In the deterministic phase, mutual co-operation
commences on move 113, after only twelve consecutive mutual defec-
tions. The string of 888 prescribed mutual co-operations between
moves 113 and 1000, in addition to the 81 probabilistic mutual co-oper-
ations during the first 100 moves, yields a total of 969 instances of
mutual co-operation in a game of 1000 moves. The resultant score,
which again represents the most probable score, is tied at 2965 points.
The competing MAC-MAC pair, however, realizes the largest empiri-
cal deviation in its family. After 500 games of MAC versus MAC, the
average score is found to be 1807 points, a remarkable difference of 1158
points between the a priori most probable and a posteriori average scores.
Again, a histogram (Figure 5) reveals the cause of this large discrepancy:.
Figure 5 shows a fragmented distribution of scores, with prominent fea-
tures in the 1300-1400, 1600-1700, 2300-2400, and 2900-3000 point
ranges. Empirically, the most probable score is 1300-1400 points. In
addition, troughs appear between 1900-2200 and 2600-2700 points,
from which ranges scores seem to be excluded. The histogram clearly
illustrates how the average score for the MAC-MAC pair falls well
below the most probable predicted score. But this illustration merely
begs the question: Why does the distribution become so fragmented?
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Figure 5: MAC versus MAC. Histogram of scores for 500 games. MAC's average score: 1807.
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Indeed, this is one of a number of questions raised by an examina-
tion of the distributions of scores between members of the maximiza-
tion family. In the four cases considered, in increasing order of initial
co-operative weighting, one finds: first, a concentration of scores at the
low end of the scale; second, a skewed distribution with a minor prom-
inence at the low end; third, a skewed distribution in the preliminary
stages of fragmentation; and fourth, a fragmented distribution. One
may wonder why these differences occur, given that each distribution
represents a range of deterministic results stemming from a domain of
probabilistic initial conditions. What causes such pronounced changes
in the profiles of the distributions?

4. Analysis of Symmetric Event Matrices

Answers are found in an analysis of the event matrix itself. There are
176,851 different combinations of 100 trials of the four possible out-
comes; in other words, for the first 100 moves in the iterated prisoner’s
dilemma, there are 176,851 possible event matrices. To facilitate analy-
sis, one seeks to formulate a few general principles that extend to the
many possible cases.

First, consider those matrices which are symmetric across their
major diagonals; that is, event matrices in which the numbers of (C,d)
and (D,c) outcomes are identical after 100 moves. As we have seen,
such matrices obtain from a priori probabilistic encounters between
maximization family twins. As a most general example, suppose that
any maximization strategy MAX, with an initial co-operative weight-
ing of p, encounters its twin. Then, during their first 100 moves, both
strategies co-operate randomly with probability p, and defect with
probability (1—p). Thus, after 100 moves, the entries in the most prob-
able event matrix are: W = 100p% X = Y = 100p(1—p); Z = 100(1—p)2.
The expected utilities are ELIC = 3p, EUD = 4p+1; and the score is tied
at 100(1+3p—p?).

The significance of symmetry across the major diagonal is as follows.
When the number of (C,d) outcomes equals the number of (D,c) out-
comes, then both competitors have identical expected utilities of co-
operation and of defection. In consequence, from move 101 onward, their
joint play is identical, with symmetric outcomes of either (D,d) or (C,c).

In the a priori evaluations of most probable scores for the MA D-MAD,
MEU-MEU, MAE-MAE, and MAC-MAC twins, one naturally finds
increasing tied scores (1029, 2625, 2882, and 2965 points respectively) as
the co-operative weighting increases. MAD’s most probable score
against its twin is far lower than MAD’s siblings” most probable scores
against their respective twins because, unlike MAD, the other siblings
sooner or later attain mutual co-operation with their respective twins.
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Empirically, it is found that the threshold co-operative weighting for
the eventual attainment of mutual co-operation is p = 3400 (in a game
of 1000 moves with the payoffs of Figure 1). This is not a highly co-
operative weighting; nevertheless, it does result in mutual co-opera-
tion from move 719 onward. The initial and final event matrices for this
threshold weighting are displayed in Figure 6. Now, compare this
result with that of a game in which the co-operative weighting of the
competitors is 3100, or just below the threshold value, as displayed in
Figure 7. While the initial conditions in Figures 6 and 7 scarcely differ,
the final results admit of considerable difference.

Having established that the threshold weighting of p = 37100 leads to
the eventual attainment of mutual co-operation at move 719, one might
next find the maximum rapidity with which such co-operation can be
attained. The highest admissible value of p, to the nearest Y, is p =
“ho. (If p equals unity, then EUD is undefined owing to division by
zero.) After 100 moves, the event matrix for this maximum value of p
contains entries W = 98; X = Y = 1; Z = 0. The expected utilities are
EUC = 2.97, EUD = 5; the score is tied at 299. Two subsequent mutual
defections, at moves 101 and 102, suffice to drive the value of EUD
below that of EUC. Perpetual mutual co-operation ensues from move
103, with a resultant final score tied at 2995. (This is comparable to a
final score between two nice strategies, which is tied at 3000.)

Evidently, for symmetric event matrices, the number of mutual
defections required to bring on mutual co-operation can be represented

100 Moves:
MAX
c d
C 14 23
MAX
D 23 40
EUC = 1.14; EUD = 2.46; score tied at 197
1000 Moves:
MAX
¢ d
296 23
MAX
D 23 658

EUC = 2.78; EUD = 1.14; score tied at 1661

Figure 6: MAX versus MAX [p(C) = p(c) = *w), initial and final event matrices.
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100 Moves:
MAX
¢ d
e 13 23
MAX
D 23 41
EUC = 1.08; ELID = 2.44; score tied at 195
1000 Moves:
MAX
c d
13 23
MAX
D 23 941

EUC = 1.08; EUD = 2.09; score tied at 1095

Figure 7: MAX versus MAX [p(C) = p(c) = *iw0], initial and final event matrices.

as a decreasing exponential function of initial co-operative weighting.
An exponential curve-fit yields the following equation:

n = f(p) = 7093e~7164p

where 1 is the number of mutual defections between move 101 and the
onset of perpetual mutual co-operation and p (%700 < p < 1) is the co-
operative weighting. The coefficient of determination for this exponen-
tial equation is 0.985.

Similarly, the final scores that result from these initial distributions
can be fitted to a second exponential curve:

s = g(f(p)) = 3007¢~-000958f(p)

where s is the score after 1000 moves. The coefficient of determination
for this expression is 0.9997.

Needless to say, while the numerical coefficients of both curves
depend upon the particular payoff structure and the length of the game,
the form of the curves is independent of these coefficients. In general
then, both the play that ensues from event matrices exhibiting symme-
try across their major diagonals, and the scores which result from this
play, conform to simple mathematical expressions. This class of event
matrix gives rise to regular and readily comprehensible outcomes.
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5. Analysis of Asymmetric Event Matrices

That class of event matrices whose members do not exhibit symmetry
across their main diagonals, is unfortunately (from the viewpoint of
simplicity of analysis) the far larger of the two classes. The event matri-
ces in this class give rise to the non-normal distributions displayed in
Figures 3 through 5. It is possible (and desirable) to gain an under-
standing of why these distributions arise without having to analyze
tens of thousands, nor even thousands of such matrices. Fortuitously,
the process can be well represented by the tabling of results of a few
dozen small probabilistic fluctuations about the most probable out-
come, for each of the strategic pairs.

One first considers the case of MEU versus MEU, displayed in
Figure 8. Recall the notation for entries in the generalized event matrix:
W, X, Y, and Z are the respective numbers of (C,c), (C,d), (D,c), and (D,d)
outcomes. Columns labelled “Initial W,X,Y,Z” contain differing values
of these variables after the first 100 moves, i.e., contain different prob-
abilistically-generated event matrices. With each initial event matrix,
described by a set {W,X,Y,Z}, is associated the move number on which
perpetual mutual co-operation commences (column labelled “Perpet-
ual (C,c)”) in the deterministic phase of the game (moves 101-1000)
arising from that set. If no mutual co-operation occurs between moves
101-1000, the entry for that set reads “none.” The column labelled
“Final Score” associates the score (after 1000 moves) which results
from the given initial set {W,X,Y,Z}.

The sets of {W,X,Y,Z} values are arranged in blocks. Within each
block, the values of W and Z are held constant, while the difference
between X and Y increases. Each column of blocks holds the value of
W constant, while the value of Z increases from block to block. Simi-
larly, each row of blocks holds the value of Z constant, while the value
of Wincreases from block to block. Thus, Figure 8 can be read both ver-
tically and horizontally.

Reading down a column shows the effect of increasing initial differ-
ence in asymmetric outcomes (X,Y) within blocks, and of increasing
initial mutual defections (Z) between blocks, upon the attainment of
perpetual mutual co-operation and upon the final score. Reading
across a row shows the effect of increasing the number of initial mutual
co-operations (W) upon the attainment of perpetual mutual co-opera-
tion and upon the final score, with the number of initial mutual defec-
tions (Z) held constant and the variance in difference between asym-
metric (X minus Y) outcomes held to unity.

Recall that for MEU versus MEU the most probable {WX,Y,Z} is
{25,25,25,25}. In Figure 8, the sets of initial event matrices are representative
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Initial
WX YZ

20,33,32,15
20,34,31,15
20,35,30,15
20,36,29,15
20,37,28,15

20,30,30,20
20,31,29,20
20,32,28,20
20,33,27,20
20,34,26,20

20,28,27,25
20,29,26,25
20,30,25,25
20,31,24,25
20,32,23,25

20,25,25,30
20,26,24,30
20,27,23,30
20,28,22,30
20,29,21,30

20,23,22,35
20,24,21,35
20,25,20,35
20,26,19,35
20,27,18,35

Figure 8: MEU versus MELU, varying event matrices and scores.

Perpetual
€.0)

none
none
none
none
none

move 651
move 755
move 885
none
none

move 497
move 567
move 651
move 755
move 885

move 346
move 389
move 439
move 497
move 567

move 277
move 309
move 346
move 389
move 439

Final
Score

1139-1139
1138-1143
1137-1147
1136-1151
1131-1156

1830-1830
1625-1625
1368-1368
1139-1139
1138-1143

2132-2132
1995-1995
1830-1830
1625-1625
1368-1368

2425-2425
2342-2342
2245-2245
2132-2132
1995-1995

2557-2557
2496-2496
2425-2425
2342-2342
2245-2245

Initial
WXJY.Z

25,30,30,15
25,31,29,15
25,32,28,15
25,33,27,15
25,34,26,15

25,28,27,20
25,29,26,20
25,30,25,20
25,31,24,20
25,32,23,20

25,25,25,25
25,26,24,25
25,27,23,25
25,28,22,25
25,29,21,25

25,23,22,30
25,24,21,30
25,25,20,30
25,26,19,30
25,27,18,30

25,20,20,35
25,21,19,35
25,22,18,35
25,23,17,35
25,24,16,35

Perpetual
(C.0)

move 386
move 423
move 464
move 510
move 562

move 324
move 354
move 386
move 423
move 464

move 251
move 273
move 298
move 324
move 354

move 213
move 231
move 251
move 273
move 298

move 166
move 181
move 196
move 213
move 231

Final
Score

2370-2370
2299-2299
2220-2220
2131-2131
2030-2030

2488-2488
2431-2431
2370-2370
2299-2299
2220-2220

2625-2625
2584-2584
2537-2537
2488-2488
2431-2431

2695-2695
2662-2662
2625-2625
2584-2584
2537-2537

2780-2780
2753-2753
2726-2726
2695-2695
2662-2662

Initial
wWXY,Z

30,28,27,15
30,29,26,15
30,30,25,15
30,31,24,15
30,32,23,15

30,25,25,20
30,26,24,20
30,27,23,20
30,28,22,20
30,29,21,20

30,23,22,25
30,24,21,25
30,25,20,25
30,26,19,25
30,27,18,25

30,20,20,30
30,21,19,30
30,22,18,30
30,23,17,30
30,24,16,30

30,18,17,35
30,19,16,35
30,20,15,35
30,21,14,35
30,22,13,35

Perpetual
(C.e)

move 262
move 281
move 301
move 323
move 347

move 213
move 229
move 245
move 262
move 281

move 185
move 199
move 214
move 229
move 245

move 151
move 162
move 168
move 186
move 199

move 127
move 127
move 126
move 126
move 125

Final
Score

2622-2622
2587-2587
2550-2550
2509-2509
2464-2464

2709-2709
2682-2682
2653-2653
2622-2622
2587-2587

2759-2759
2736-2736
2709-2709
2682-2682
2653-2653

2820-2820
2801-2801
2788-2788
2759-2759
2736-2736

2858-2863
2853-2868
2850-2875
2845-2880
2842-2887
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of some probabilistic fluctuations in these values that would naturally
occur in empirical trials. Three main tendencies, and one interesting excep-
tion to them, quickly become apparent.

First, within each block, the onset of perpetual mutual co-operation
(when it occurs) is increasingly delayed by increases in the difference
between X and Y. For a given number of mutual co-operations, a given
number of mutual defections, and an initial unequal number of (C,d)
and (D,c) outcomes, the MEU-MEU pair first proceeds to equalize the
number of (C,d) and (D,c) outcomes. Once that happens, their expected
utilities become equal, and the pair then defects until the value of EUD
is driven below that of EUC. Perpetual mutual co-operation then
ensues, and a tied final score results.? The greater the initial difference
between X and Y, the greater number of moves are required for their
equalization, and the still greater number of moves must be made
before mutual co-operation is attained. Thus, for a given W and Z, the
smaller the initial difference between X and Y, the larger the final score.

Second, reading down the columns, one perceives that for a constant
value of W, the onset of perpetual mutual co-operation is actually has-
tened as the initial number of mutual defections increases. Within cer-
tain probabilistic limits, which vary according to their initial weight-
ings, the maximization strategies demonstrate the capacity of enlisting
mutual defections in the service of perpetual mutual co-operation.
While one wishes to refrain from lapsing into trite moralization, this
counter-intuitive capacity suggests that, in certain instances, the game-
theoretic end may justify the game-theoretic means.

Third, reading across the rows, one perceives that for a constant
value of Z, the onset of perpetual mutual co-operation is hastened as
the initial number of mutual co-operations increases. This tendency is
not surprising, but reassuring in terms of the integrity of the maximi-
zation strategy.

In general, Figure 8 shows that perpetual mutual co-operation
between MEU-MEU pairs, and thus their final scores, depend upon
three factors. The scores tend to increase as W increases with Z fixed,
as Z increases with W fixed, and as the difference between X and Y
decreases with both W and Z fixed. One can amalgamate the first two
tendencies, and observe that the final scores tend to increase as the sum
of similar outcomes (W plus Z) increases; or, equivalently, as the sum
of dissimilar outcomes (X plus Y) decreases. This observation, how-
ever, leads to the aforementioned exception.

The {30,X,Y,35} block boasts the largest W and Z values in Figure 8,
yet the results that stem from this block are not altogether consistent
with the tendencies so uniformly prevalent in the rest of the table. To
begin with, the onset of perpetual mutual co-operation is hastened
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(albeit only slightly) as the difference between X and Y increases, not
decreases. And, as evidenced by the absence of tied final scores, the
MEU-MEU pairs in this block attain perpetual mutual co-operation
without having first equalized X and Y values, and without ever equal-
izing them. The scores themselves are the highest in the table, in keep-
ing with this block’s highest W + Z sum. The significance of this
unusual block will be brought to light in subsequent tables.

Meanwhile, Figure 8 does indeed account for the distribution of
scores in Figure 3. One can observe the contributions towards skew-
ness, with a majority of scores occurring in the 2400-2700 point range,
and none exceeding 2900 points. Contributions to the minor promi-
nence in the 1100-1200 point range occur when the sum of W plus Z
falls below a certain threshold, making mutual co-operation unattain-
able within 1000 moves; or when the sum of W plus Z is theoretically
sufficient for perpetual mutual co-operation, but the difference
between X and Y is large enough to prevent its onset. These latter con-
ditions prevail in the {20,X,Y,15} and {20,X,Y,20} blocks, respectively.

Next, a similar table is generated for MAE versus MAE. Recall that
the most probable {W,X,Y,Z} for the MAE-MAE pair is {52,20,20,8}. Fig-
ure 9 displays corresponding fluctuations about these most probable
values, and the results to which they give rise.

Reading down the first column of Figure 9, one observes that the two
previous tendencies hold until the {40,X,Y,14} block; that is, the onset
of perpetual mutual co-operation is hastened as the difference X minus
Y decreases within blocks, and as the sum X plus Y decreases between
blocks. The {40,23,23,14} matrix of the {40,X,Y,14} block also conforms
to these tendencies. But the other matrices in that block yield results
comparable to those of the {30,X,Y,35} block in Figure 8; that is, they
give rise to perpetual mutual co-operation without first equalizing X
and Y values, and the onset of mutual co-operation is hastened slightly
as the difference X minus Y increases.

Reading down the second column, one observes that this departure
from precedent tendency now becomes the norm itself. With the obvi-
ous exception of matrices in which X equals Y initially, the second col-
umn of blocks behaves as the last block in the first column. Note that,
within each block except the first, the order of the onset of perpetual
mutual co-operation is increasingly jumbled.

The most important overall effect of this departure, exemplified in
the first three blocks of column two, is reflected in the final scores.
Because the X and Y values are not equalized prior to perpetual mutual
co-operation, the gap between the final scores increases as the initial
difference between X and Y increases. Owing to the vicissitudes of
chance during the first 100 moves, one member of the MAE-MAE pair
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Initial
W.X.Y.Z

40,29,29,2
40,30,28,2
40,31,27,2
40,32,26,2
40,33,25,2

40,28,27,5
40,29,26,5
40,30,25,5
40,31,24,5
40,32,23,5

40,26,26,8
40,27,25,8
40,28,24,8
40,29,23,8
40,30,25.8

40,25,24,11
40,26,23,11
40,27,22,11
40,28,21,11
40,29,20,11

40,23,23,14
40,24,22,14
40,25,21,14
40,26,20,14
40,27,19,14

Figure 9: MAE versus MAE, varying event matrices and scores.

Perpetual
(C,c)

move 227
move 239
move 252
move 265
move 280

move 216
move 227
move 239
move 252
move 265

move 195
move 205
move 216
move 227
move 239

move 180
move 195
move 205
move 216
move 227

move 140
move 166
move 166
move 165
move 165

Final

Score

2715-2715
2694-2694
2671-2671
2648-2648
2621-2621

2734-2734
2715-2715
2694-2694
2671-2671
2648-2648

2770-2770
2753-2753
2734-2734
2715-2715
2694-2694

2793-2798
2770-2770
2753-2753
2734-2734
2715-2715

2819-2819
2814-2824
2809-2929
2806-2836
2801-2841

Initial
WX.Y.Z

50,24,24,2
50,25,23,2
50,26,22,2
50,27,21,2
50,28,20,2

50,23,22,5
50,24,21,5
50,25,20,5
50,26,19,5
50,27,18,5

50,21,21,8
50,22,20,8
50,23,19,8
50,24,18,8
50,25,17,8

50,20,19,11
50,21,18,11
50,22,17,11
50,23,16,11
50,24,15,11

50,18,18,14
50,19,17,14
50,20,16,14
50,21,15,14
50,22,14,14

Perpetual
(C.c)

move 169
move 203
move 206
move 209
move 211

move 158
move 209
move 211
move 210
move 212

move 148
move 211
move 210
move 212
move 214

move 210
move 212
move 214
move 443
move 213

move 129
move 214
move 443
move 213
move 523

Final
Score

2836-2836
2754-2809
2742-2812
2730-2815
2720-2820

2851-2856
2730-2815
2720-2820
2717-2827
2707-2832

2869-2869
2720-2820
2717-2827
2707-2832
2697-2837

2717-2827
2707-2832
2697-2837
2357-2357
2688-2853

2898-2898
2697-2837
2357-2357
2688-2853
2209-2209

Initial
W.X.Y.Z

60,19,19,2
60,20,18,2
60,21,17,2
60,22,16,2
60,23,15,2

60,18,17,5
60,19,16,5
60,20,15,5
60,21,14,5
60,22,13,5

60,16,16,8
60,17,15,8
60,18,14,8
60,19,13,8
60,20,12,8

60,15,14,11
60,16,13,11
60,17,12,11
60,18,11,11
60,19,10,11

60,13,13,14
60,14,12,14
60,15,11,14
60,16,10,14
60,17,9,14

Perpetual
(C,c)

move 140
move 257
move 623
move 668
move 717

move 623
move 668
move 717
move 263
move 859

move 124
move 717
move 263
move 859
move 265

move 263
move 859
move 265
move 268
none

move 110
move 265
move 268
none
none

Final
Score

2899-2899
2622-2622
2059-2059
1975-1975
1883-1883

2059-2059
1975-1975
1883-1883
2585-2850
1614-1614

2922-2922
1883-1883
2585-2850
1614-1614
2568-2868

2585-2850
1614-1614
2568-2868
2555-2875
1334-1359

2941-2941
2568-2868
2555-2875
1334-1359
1327-1372
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finds that joint occurrences of its co-operation and its twin's defection
outnumber joint occurrences of its defection and its twin’s co-opera-
tion. In the {W,X,Y,Z} region under consideration, this member’s final
score decreases, while its twin’s increases, as the initial difference X
minus Y becomes larger.

Then, suddenly, in the {50,X,Y,11} block, a new phenomenon is man-
ifest. Four of five sets in this block give rise to perpetual mutual co-
operation between moves 210-214, with respective final scores within
the 2688-2853 point range. But the {50,23,16,11} matrix, which contains
neither the largest nor the smallest (X,Y) difference in the block, gives
rise to an unexpectedly large number of mutual defections, with the
onset of perpetual mutual co-operation delayed until move 443, The
resultant final score, tied at 2357 points, indicates that X and Y values
are once again equalized during the game.

This phenomenon is increasingly more frequent, and more drastic,
through the balance of column two, and throughout column three. For
instance, consider what takes place in the {60,X,Y,8} block. The first
matrix, {60,16,16,8}, gives rise to early perpetual mutual co-operation,
commencing on move 124, and the MAE-MAE twins attain a corre-
spondingly high score, tied at 2922 points. But the second matrix,
{60,17,15,8}, leads to comparative disaster: perpetual mutual co-opera-
tion does not commence until move 717, and the pair attains a corre-
spondingly low final score, tied at 1883 points. Hence, a small incre-
ment in the difference between X and Y produces a momentous delay
in the onset of perpetual mutual co-operation, with a correspondingly
large decrement in the final scores.

The third matrix in the block, {60,18,14,8}, reverses the previous disas-
ter. Perpetual mutual co-operation begins at move 263, which is now
explicable in light of the initial (X,Y) difference. No equalization of
(X,Y) values takes place, and the final scores are therefore fairly high but
disparate, at 2585-2850 points. But the fourth matrix, {60,19,13,8}, leads
to renewed disaster, with perpetual mutual co-operation commencing
only on move 859, and a resultant low tied score of 1614 points.

The culmination of these alternating radical changes appears in the
last two blocks of column three. The combination of a sufficiently large
W plus Z sum and a sufficiently large X minus Y difference can result
in perpetual mutual defection from move 101 to the end of the game.
In such cases, the MAE-MAE pair attains scores of less than 1400 points.

Evidently, the event matrix becomes increasingly unstable as the
sum of similar outcomes (W + Z) begins to exceed that of dissimilar
outcomes (X + Y). The expected utilities associated with these out-
comes begin to reverse their prescriptions with each increment of the
(X,Y) difference, and the pendulum of joint outcomes swings steadily
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away from perpetual mutual co-operation, and towards perpetual
mutual defection, as W plus Z grows and X minus Y diminishes.

Figure 9 indeed accounts for the distribution of scores in Figure 3,
albeit in an unexpected fashion. When random fluctuations about the
most probable event matrix, {52,20,20,8}, are relatively small, the scores
attained are fairly high. Larger fluctuations which reduce the sum W +
Z do not substantially reduce the final scores. But larger fluctuations
which increase the sum W + Z produce both the highest scores in the
distribution (when X equals Y), as well as the lowest scores (when X
minus Y is sufficiently large).

Next, a similar table is generated for the MAC-MAC pair. The process
leading to the fragmented distribution of scores for 500 games of MAC
versus MAC (displayed in Figure 5), is well depicted in Figure 10. Fig-
ure 10 shows a continuation of the new tendency observed in Figure 9;
namely, a transition to increasingly unstable event matrices. Recall that
the most probable event matrix for the MAC-MAC pair is {81,9,9,1}.
This set of values evidently lies in a highly unstable region of the
[W,X,Y,Z} spectrum, in which probabilistic fluctuation gives rise to one
of three situations. Together, the three situations account for the frag-
mentation of the MAC-MAC pair’s distribution of scores.

First, perpetual mutual co-operation can be attained very rapidly, as
on move 115 in the {79,X,Y,1} block, or even immediately, as on move
101 in the {83,X,Y,8} block. The onset of rapid perpetual mutual co-
operation, when it occurs, is hastened as the sum W plus Z increases.
And when it does occur, it results in very high (though not necessarily
equal) scores for both twins, in the 2960-2992 point range. This situa-
tion contributes to the prominence at the high end of the distribution
in Figure 5.

Second, the onset of perpetual mutual co-operation can be notice-
ably retarded, occurring anywhere between move 364 and move 396 in
Figure 10. The delay increases with the sum of W plus Z. And the delay,
when it occurs, marks a disparity in the final scores. One pair-member
attains roughly 28002950 points; the other, roughly 2200-2500 points.
This situation thus contributes to the high-range prominence, and it
forms the prominence in the next-lowest point range in Figure 5. The
trough from 2600-2800 points occurs, self-evidently, because no prob-
abilistic event matrix in this region of the {W,X,Y,Z} spectrum can give
rise to a deterministic score in that range.

Third, there may be no onset of perpetual mutual co-operation. Such
cases give rise to disparate, low final scores. The range of the disparity
varies roughly from 250 points to 550 points. This range increases,
between blocks, with the sum W plus Z; and it increases, within blocks,
with the difference X minus Y. A typical score is 1621-1306 points. This



8.1

Initial
wXxYZ

79,10,10,1
79,11,9,1
79,12,8,1
79,13,7,1
79,14,6,1

79,10,9,2
79,11,8,2
79,12,7,2
79,13,6,2
79,14,5,2

79,9,9,3

79,10,8,3
72.11.7.3
79,12,6,3
79,13,5,3

79,8,8,5
79,9,7.5
79,10,6,5
79,11,5,5
79,12,4,5

79,7.6,8
79,8,5,8
79,9,4,8
9,10,3,8
79,11,2,8

Perpetual
(Cie)

move 115
move 364
none
none
none

move 364
none
none
none
move 375

move 111
nonc
none
none
move 375

move 107
none
none
move 375
none

none
move 375
none
none
none

Final
Score

2960-2960
2352-2887
1330-1565
1318-1583
1306-1601

2352-2960
1330-1565
1318-1583
1306-1601
2298-2933

2965-2965
1330-1565
1318-1583
1306-1601
2298-2933

2970-2970
1318-1583
1306-1601
2298-2933
1285-1640

1306-1601
2298-2933
1285-1640
1272-1662
1259-1684

Initial
WX YZ

81,9,9,1

81,10,8,1
81,11,7,1
81,12,6,1
81,13,5,1

81,9,8,2

81,10,7,2
81,11,6,2
81,12,5,2
81,13,4,2

81,8,8,3
81,9,7,3
81,10,6,3
81,11,5,3
81,12,4,3

81,7,7,5
81,8,6,5
81,9,5,5
81,10,4,5
81,11,3,5

81,6,5,8
81,7,4,8
81,8,3,8
81,9,2,8
81,10,1,8

Perpetual
(C * c]

move 113
none
none
none
move 385

none
none
none
move 385
none

move 109
none
none
move 385
none

move 105
none
move 385
none
none

move 101
none
none
none
none

Figure 10: MAC versus MAC, varying event matrices and scores.

Final
Score

2965-2965
1330-1585
1318-1603
1306-1621
2278-2933

1330-1585
1318-1603
1306-1621
2278-2933
1285-1660

2970-2970
1318-1603
1306-1621
2278-2933
1285-1660

2975-2975
1306-1621
2278-2933
1285-1660
1272-1682

2976-2981
1285-1660
1272-1682
1259-1704
1245-1730

Initial
wW.AX,Y.Z

83,8.8.1
83,9,7,1
83,10,6,1
83,11,5,1
83,12,4,1

83,8,7,2
83,9,6,2
83,10,5,2
83,11,4,2
83,12,3,2

83,7,7,3
83,8,6,3
83,9,5,3
83,10,4,3
83,11,3,3

83,6,6,5
83,7.5,5
83,8,4,5
83,9,3,5
83,10,2,5

83,5,4.8
83,6,3,8
83,7,2,8
83,8,1,8
83,9,0,8

Perpetual
(Cic)

move 111
nonc
none
move 396
none

none
none
move 396
none
none

move 107
none
move 396
none
none

move 104
move 396
none
none
none

move 101
move 101
move 101
none
none

Final
Score

2970-2970
1318-1623
1306-1641
2256-2931
1285-1680

1318-1623
1306-1641
2256-2931
1285-1680
1272-1702

2975-2975
1306-1641
2256-2931
1285-1680
1272-1702

2978-2978
2256-2931
1285-1680
1272-1702
1259-1724

2977-2982
2972-2987
2967-2992
1245-1750
1231-1776
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situation contributes to the two other prominences, in the 1500-1700
and 1300 point ranges of Figure 5. Again, troughs occur in the 1900~
2200 and 1000-1200 point ranges because such scores are deterministi-
cally inaccessible from the event matrices in this probabilistic region of
the {W,X,Y,Z} spectrum.

These three different situations occur consecutively in the {83,X,Y,5}
block of Figure 10. The instability of the event matrix is well evidenced
in this block. The matrix {83,6,6,5} gives rise to perpetual mutual co-
operation on move 104, and results in a final score tied at 2978 points.
When the (X,Y) values fluctuate from (6,6) to (7,5), perpetual mutual
co-operation does not begin until move 396, with a resultant score of
2256-2931. One further fluctuation in (X,Y) values, from (7,5) to (8,4),
debars further perpetual mutual co-operation from occurring in this
block, and results in scores such as 1285-1680. Thus, in this block, an
initial (X,Y ) difference of only 4 causes severe decrements, of 1693 and
1298 points, to the final scores of the MAC-MAC pair.

In sum, Figures 8, 9, and 10 account for the different non-normal dis-
tributions of final scores in repeated encounters between MEU-MEU,
MAE-MAE and MAC-MAC pairs. Moreover, these tables reveal some
unexpected, interesting and shifting tendencies across the spectrum of
possible event matrices. These tendencies convey an appreciation of
the general nature of the relationship between the probabilistic and
deterministic phases of the maximization family’s play.

This appreciation extends to cases in which siblings, rather than
twins, are paired. One need not resort to further analyses of numerous
representative probabilistic fluctuations, but one might outline just one
case to illustrate how the understanding can be applied. One hundred
games of MAC versus MAE generate the non-normal distributions of
final scores displayed in Figure 11.

The most probable event matrix for MAC versus MAE is {64,26,7,3},
which gives rise to perpetual mutual co-operation on move 295, and
thence to the most probable score of MAC 2473, MAE 2913. But the
average score for 100 games is found to be MAC 1849, MAE 2123.
Again, the distributions explain the discrepancy. But what gives rise to
the distributions?

In the initial event matrix, let W and Z be held constant at their most
probable respective values of 64 and 3, and let (X,Y) fluctuate from
(25,8) to (29,4). The results are displayed in Figure 12, which illustrates
how the distributions in Figure 11 arise. The probabilistic event matri-
ces for MAC versus MAE lie in an unstable region of the {W,X,Y,Z}
spectrum, from which two main deterministic states are accessible.
Perpetual mutual co-operation either commences around move 300, or
it does not commence at all. The first state contributes to the higher
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Figure 11: MAE versus MAC. Histogram of scores for 100 games. Average score: MAE
2123, MAC 1849.

point-range features in the respective distributions; the second, to the
lower. In the first situation, MAE outpoints MAC by a typical score of
2900-2500; in the second situation, by a typical score of 1600-1350.

6. An Appeal to Evolution

Similar outlines could naturally be drawn to account for the results of
other encounters between maximization family siblings. But the fore-
going analyses explain the reasons for MAC’s relatively poor perfor-
mances against its twin and its siblings, as revealed in Figure 2. MAC's
initially high co-operative weighting, which stands MAC in better
stead than its siblings in competition against other strategic families,
militates against MAC in intrafamilial competition. MAC’s probabilis-

Initial W, X, Y, Z Perpetual (C, c) Final Score
64,25,8,3 none 1320 - 1425
64,26,7,3 move 295 2473 - 2913
64,27,6,3 move 299 2457 - 2922
64,28,5,3 move 302 2443 - 2933
64,29,4,3 none 1280 - 1495

Figure 12: MAC versus MAE, varying event matrices and scores.
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tic event matrices span an unstable region of the {W.X,Y,Z} spectrum,
and the instability causes moderate to extreme discrepancies between
MAC’s most probable and average intrafamilial scores.

MAC's less co-operatively weighted siblings, MAE and MEU, are
also afflicted by this familial syndrome, but to correspondingly lesser
extents. MAD is immune to it; hence MAD’s most probable and aver-
age scores coincide. But MAD’s immunity is conferred by a property
which entails far worse consequences in the tournament environment;
namely, the inability to cross the threshold of perpetual mutual co-
operation. Hence, MAD'’s prophylactic measure is more debilitating
than the syndrome which it prevents.

Does the lack of sibling recognition among maximization family
members lend itself to any social or biological interpretation? One
might be tempted to draw a superficial moral from this story, to the
effect that since maximization strategies embody the property of
exploitiveness, then even if they find no exploitable strategies in their
environment they cannot refrain from exploiting one another. Simplis-
tic sociopolitical and ethological allegories abound. One might envi-
sion a proverbial pack of thieves falling out over their spoils, instanti-
ating Hobbes's (1651, ch. 13) notion of fleeting or insincere alliances in
his natural war “of every man against every man.” One might imagine
a school of sharks devouring one another during a feeding frenzy, in
the spirit of Spencer’s (1898, pp. 530-31) “survival of the fittest,” which
naturally applies to predators as well as to prey.*

But these allegorical interpretations do not account for the mathe-
matical niceties of the maximization family’s interactions. If exploitive-
ness were a pivotal determinant of strategic robustness, then MAD
would out-perform its siblings in intrafamilial competition, followed
by MEU, MAE, and MAC. As Figure 2 shows, this does not occur.
Moreover, as Axelrod (1980b) predicts and my (1992) tournament dem-
onstrates, the most robust strategy (MAC) is able both to exploit the
exploitable and to co-operate with the provocable. Hence, if a game-
theoretic analogue of sociobiological fitness is strategic robustness,
then exploitiveness alone does not make a strategy relatively robust.

A deeper interpretation of the maximization family’s performance
does not preclude biological and ethological analogies; rather, it sug-
gests that a fundamental comparison be made between species recogni-
tion and strategic identification. Mechanisms of species recognition are
as yet relatively little-understood across the broad zoological spectrum;
however, it appears that many forms of conspecific recognition and sub-
sequent behaviour are mediated by pheromones (e.g., see Stoddart 1976;
Birch and Haynes 1982). Hosts of intraspecific biochemical messages are
transmitted and received in the animal kingdom — humans included -
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and it is easy to appreciate why natural selection would have favoured
the evolution of this general mechanism across diverse ranges of species.

While n-pair, repeated Prisoner’s Dilemma tournaments are suscep-
tible to ecological modeling (see Axelrod 1980b; Marinoff 1992), they
are also amenable to evolutionary change. We are not now referring to
Maynard-Smith’s (1982) evolutionary games theory, which inge-
niously models population genetics using game-theoretic constructs;’
rather, we are invoking a cognitive scientific approach, which effects
strategic evolution by simulating aspects of the neo-Darwinian para-
digm using computer technology and high-level programming lan-
guages. For example, Koza’s (1991) LISP programs generate the co-
evolution of minimax strategies in a generic two-person, zero-sum
game. Fujiki and Dickinson (1987) adapt genetic algorithms to manip-
ulate LISP expressions, thereby evolving strategies for the Prisoner’s
Dilemma. Danielson (1992, pp. 133-42) uses PROLOG to simulate both
strategic adaptation and learning in the Prisoner’s Dilemma. Although
evolved strategies may incorporate meta-strategic properties, their
paradigmatic development is distinctly evolutionary (rather than
meta-game-theoretic®). Danielson (1992, pp. 51-52) calls this approach
“moral engineering.”

None the less, it can be predicted that Axelrod’s (1984, p. 15) maxim
for the iterated Prisoner’s Dilemma, “... there is no best strategy inde-
pendent of the strategy used by the other player,” is unlikely to be threat-
ened by the emergence of an evolutionary “super-strategy.” To see why
the maxim holds in evolutionary scenarios, consider the following argu-
ment. Hypothesize that the maximization family evolved some reliable
mechanism of familial identification.” A suitable strategic analogue of a
pheromone could be a designated substring of co-operations and defec-
tions (e.g., CCCCCDDDDD) nested somewhere within the 100 random
moves. When two such evolved maximization siblings compete, they
construct their event matrices as usual. But at the same time, they also
monitor their opponent’s string of moves. When either maximization
strategy detects the predetermined substring that identifies its opponent
as “conspecific,” it immediately sends back the same substring in reply,
then initiates perpetual co-operation. Its opponent detects this identify-
ing substring, and responds with perpetual co-operation.

If the maximization strategies had been vouchsafed the capacity for
such behaviour, then their performances would have been consider-
ably enhanced. MAE would have finished second instead of third in
overall robustness, while MAC’s margin of victory would have been
even wider. However, this mechanism of identification would not
render MAC the “best” strategy, independent of environment. The
mechanism could also backfire, in at least three ways.
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First, any randomizing strategy (or member of the probabilistic fam-
ily) could fortuitously generate the predetermined recognition-string,
and would thereby elicit perpetual co-operation from a maximizer. The
maximization strategy would then be exploited. Second, given the
knowledge that the maximization family employs a predetermined
recognition-string, and given also a sufficient number and length of
encounters, then presumably any evolving strategy could, by trial-
and-error, eventually learn to generate the recognition-string itself.
Again, the maximization strategy would be exploited. Third, given an
evolutionary scenario, one might witness the emergence of a “rogue”
maximization strategy, which first produces the identification neces-
sary to elicit perpetual co-operation from its maximizing sibling, and
then proceeds to defect perpetually itself, thus maximizing its own
long-term gains (except against its twin). Such a strategy, ironically,
would be exploiting the very mechanism that evolved to circumvent
intraspecific exploitation.

As Danielson (1992, p. 135) notes, “Flexibility makes new predatory
tricks possible and requires co-operative players to be more cautious.”
So, notwithstanding emergent evolutionary models, one confidently
predicts the reassertion of the problematic nature of the Prisoner’s
Dilemma. Ever-more successful strategies may evolve, but — shades of
the antlers of the Irish elk — any attribute that guarantees today’s suc-
cess may also seal tomorrow’s doom.

Notes

1 The intrafamilial data in this table is based on 100 games between siblings,
and 500 games between twins.

2 As previously noted (Marinoff 1992, p. 214), an occurrence of mutual defec-
tion lowers the expected utility of further defection. Thus, for maximization
family encounters, mutual defection increases the propensity for mutual co-
operation.

3 Buta tied final score does not result uniquely from this process. For example,
the {20,33,32,15} matrix in Figure 8 generates a single unilateral co-operative
play (D,c) at move 911, which produces a symmetric matrix and hence a tied
final score in the absence of mutual co-operation.

4 A deeply entrenched fallacy attributes the phrase “survival of the fittest” to
Darwin. In fact, it was coined by Spencer in 1863/4 as a synonym for “natu-
ral selection.” Darwin long resisted adopting this term, despite Wallace's
(1866) and others’ promptings.

5 Contrary to Axelrod’s and Hamilton’s (1981) assertion, there is no evolution-
arily stable strategy in the repeated Prisoner’s Dilemma. See Boyd and Lor-
berbaum (1987), Axelrod and Dion (1988), Marinoff (1990).

6 Meta-game theory was formalized by N. Howard (1971).
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7 J. Howard (1988) lists the source code, in BASIC, of a self-recognizing
Prisoner’s Dilemma strategy.
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