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This article reports the results of a computer experiment with iterated prisoner’s dilemmas
conducted as an interactive tournament of competing strategies and families of strategies. The
purposes of the experiment are to complement Axelrod’s previous tournaments and to supple-
ment his findings. For his competitions, Axelrod drew on an unregulated population of strategies.
In contrast, the interactive tournament regulates the composition of the strategic population
itself. By grouping the competing strategies into families, whose members are related in certain
ways, the performance characteristics of particular strategies are studied by varying parameters
in their familial program logic. By this means, optimal strategic performance can be “bred” into
domesticated populations. Two new methods are developed for assessing strategic robustness:
combinatorial analysis and eliminatory ecosystemic competition. The strategy that maximizes
expected utility with the most cooperative initial weighting is found to be most robust in the
interactive environment.

Axelrod’s (1980a, 1980b) computer tournaments for the iterated prisoner s
dilemma revealed salient criteria of effective (and ineffective) strategic
performance in the two-player, multiple-pair context. In order to amplify
Axelrod’s findings and to test his principal conclusions, I conducted a further
computer experiment called the “interactive tournament.”

In his previous tournaments, Axelrod regulated three of four key environ-
mental factors: the payoff structure, the number of iterations in a game, and
the players’ knowledge of this number. He then solicited unregulated popu-
lations of competing strategies from diverse sources. His strategic popula-
tions were thus of the “wild” type.

The alternative to a wild population is, of course, a “domesticated” one.
If the strategic types in competition are themselves regulated, the experi-
menter then exercises fuller control over the tournament environment. Do-
mesticated strategies can be “bred” that incorporate or exclude virtually any
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TABLE 1
Prisoner’s Dilemma Payoff Matrix

Column Player
c d
C 3.3 0,5
Row Player
D 5,0 1,1

NOTE: C and ¢ denote “cooperation”; D and d denote “defection.”

combination of niceness, provocability, forgiveness, and exploitiveness,
among other qualities. And certain wild strategies, selected for robustness or
for any desired performance characteristic, can be maintained “in captivity”
and induced to compete against the domesticated strategies. By studying the
interactions of captive and domesticated strategies under varying conditions,
one can identify properties that tend to make a given strategy more (or less)
effective in a particular strategic population within a defined environment.
A flexible strategy can be modified until its performance is optimally
effective in the context of its competitors and surroundings.

The key environmental factors in the interactive tournament are defined
as follows:

1. The payoff structure is identical to that employed by Axelrod in his previous
tournaments.

2. The number of iterations per game is held constant at 1,000. This increase
(over Axelrod’s constant 200 in his first tournament and probabilistically
averaged 200 in his second tournament) grants slowly developing strategies
an opportunity to attain optimal-performance levels.

3. All strategies are programmed with the property of “integrity”; that is, each
stralegy adheres to its normal decision rule for the full length of the game. No
strategy deviates from its decision rule by making unprovoked late-game
defections hoping to exploit both intrinsically cooperative strategies and
stralegies too slow to retaliate.

4. The 20 strategies competing in the interactive tournament are grouped into
“families” in which members are related either closely (by program structure),
or more distantly (by conceptual function).

THE STRATEGIC FAMILIES

The five families in the interactive tournament and their members’ acro-
nyms and decision rules are summarized as follows:
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THE PROBABILISTIC FAMILY

Members of this family cooperate and defect randomly according to their

individual probabilistic weightings. The two pure strategies (pure coopera-
tion and pure defection) are included in this family because their program
structure is identical to that of the other members. The members’ decision
rules thus differ by a sole parameter: the probability of cooperation on a given
move. This is the only family in the tournament whose members make their
moves without taking their opponent’s moves into account.

DDD: This is the strategy of pure defection. On every move, DDD cooperates with
a probability of zero and defects with a probability of unity.

TQD: This is the strategy of three-quarter random defection. On every move, TQD
cooperales with a probability of 1/4 and defects with a probability of 3/4.
RAN: This is the strategy of random equiprobability. On every move, RAN

cooperates or defects with a probability of 1/2.
TQC: This is the strategy of three-quarter random cooperation. On every move,
TQC cooperates with a probability of 3/4 and defects with a probability of 1/4.
CCC: This is the strategy of pure cooperation. On every move, CCC cooperates
with a probability of unity and defects with a probability of zero.

THE TI'T-FOR-TAT FAMILY

Members of this family are all related to tit-for-tat, and hence share a

similar program structure. Small variations in members’ decision rules can
naturally result in large variations in competitive performance.

TFT: Tit-for-tat is the primogenitor of the family, and was the most robust strategy
in Axelrod’s tournaments. TFT cooperates on the first move and plays next
whatever its opponent played previously.

TTT: Tit-for-two-tats is less provocable than TFT. TTT would have won Axelrod’s
first tournament (had it competed), but fared less well in the second. TTT
cooperates on the first two moves and defects only after two consecutive
defections by its opponent.

BBE: This strategy attempts to “burn both ends” of the strategic candle. It plays
exactly as TFT with one modification: BBE responds to an opponent’s coop-
erative move by cooperating with a probability of 9/10. BBE thus attempts to
out-perform TFT by being equally provocable but less reliably forgiving.

SHU: This is Shubik’s strategy, which ranked fifth in Axelrod’s first tournament.
It plays as TFT with a modification. SHU defects once following an opponent’s
first defection, then cooperates. If the opponent defects on a second occasion
when SHU cooperates, SHU then defects twice before resuming cooperation.
After each occasion on which the opponent defects when SHU cooperates,
SHU increments its retaliatory defections by one. SHU thus becomes progres-
sively less forgiving in direct arithmetic relation to the number of occasions on
which SHU's cooperation meets with an opponent’s defection.
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TABLE 2
Event Matrix for Maximization Strategy versus Opponent

Opponent
c d
C w X
Maximization strategy
D ¥ z

NOTE: W = number of occasions on which outcome (C, ¢) obtained
X = number of occasions on which outcome (C, d) obtained
¥ = number of occasions on which outcome (D, c) obtained
Z = number of occasions on which outcome (D, d) obtained

TAT: Tat-for-tit is the binary complement of TFT. TAT defects on its first move,
then plays next the opposite of whatever its opponent played previously. TAT
thus defects in response to cooperation and cooperates in response to defection,
TAT has been bred to exhibit contrariness.

THE MAXIMIZING FAMILY

All members of this family maximize expected utilities, but do so with
different initial probabilistic weightings. Each member plays randomly for
100 moves (cooperating or defecting according to its particular weighting),
and keeps track of all moves made by both itself and its opponent. After 100
moves, an “event matrix” of joint outcome frequencies is used to assign a
posteriori probabilisties in the calculation of expected utilities for the 101st
move and all moves thereafter. The generalized event matrix takes the form
shown in Table 2.

From move 101 onward, the maximization strategy computes the proba-
bility that each game state obtains as an outcome frequency from the event
matrix. By summing the products of the probability of each game state and
the payoff of that state, the expected utilities of cooperation and defection
are evaluated explicitly as:

EU(C) = 3W/W + X)
EUD) = (SY + Z)(Y + Z).

If EU(C) is greater than or equal to EU(D), the maximization strategy
cooperates on move 101; otherwise, it defects. The maximization strategy
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continues to record outcomes throughout the game, and thus updates the
event matrix after every outcome.

The program structure is identical for every member of this family. The
critical parameter, in whose value the members differ, is the weight accorded
to the probability of a member’s random cooperation during the first 100
moves. The maximization family was bred to represent a range of weights.

MEU: Maximization of expected utility is the familial prototype. A reactive-
maximization strategy appeared in Axelrod’s tournaments under the name of
its submitter, DOWNING. DOWNING ranked 10th among 15 entries in the
first tournament and 40th among 63 in the second. DOWNING adopted the
principle of insufficient reason’ and assigned (a priori) equiprobabilities of 1/2
to each opponent’s choice prior to its first move. It then updated the probabil-
ities according to the relative frequencies of actual outcomes, DOWNING
would have finished first (in the first tournament) had its initial probabilistic
outlook been more optimistic. MEU randomly cooperates or defects with
probability 1/2 for the first 100 moves. But in contrast to DOWNING, MEU
assumes nothing about the play of its opponent. Instead, MEU notes its oppo-
nent’s choice on each move and records each joint outcome in the event matrix.

MAD: This strategy maximizes expected utilities with initial weighting at defec-
tion. MAD plays exactly as MEU except that, on each of its first 100 moves,
MAD defects with a probability of 9/10 and cooperates with a probability of 1/10.

MAE: This strategy maximizes expected utilities with initial weighting at equal-
ized expectation. The numerical values of this weighting are thus dependent
on the payoff structure of the game. Given the payoffs of the interactive
tournament, MAE cooperates with a probability of 5/7 and defects with a
probability of 2/7.

MAC: This strategy maximizes expected utilities with initial weighting at coop-
eration. MAC plays exactly as MEU except that, on each of its first 100 moves,
MAC cooperates with a probability of 9/10 and defects with a probability of 1/0.

THE OPTIMIZATION FAMILY

Unlike the preceding strategic families, members of the optimization
family are related neither by common program structures nor by variations
on a common decision rule. The attribute shared by this family’s members is
their demonstrated success in previous competition(s), achieved by imple-
menting decision rules that attempt to optimize future outcomes in light of
past ones.

NYD: This is Nydegger’s strategy. It ranked third in Axelrod’s first tournament.
NYD is succinctly described by Axelrod [1980a, 22]:

1. “Alternatives are to be judged equiprobable if we have no reason to expect or prefer one
over the other” (Weatherford 1982, 29; see also Luce and Raiffa 1957, 284).
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The program begins with tit for tat for the first three moves, except that if it
was the only one to cooperate on the first move and the only one to defect on
the second move, it defects on the third move. After the third move, its choice
is determined from the 3 preceding outcomes in the following manner. Let A
be the sum formed by counting the other’s defection as 2 points and one’s own
as | point, and giving weights of 16, 4 and 1 to the preceding three moves in
chronological order. The choice can be described as defecting only when A
equals 1,6, 7, 17, 22, 23, 26, 29, 30, 31, 33, 38, 39, 45, 49, 54, 55, 58, or 61.

GRO: This is Grofman’s strategy. It ranked fourth in Axelrod’s first tournament.
GRO cooperates on the first move. After that, GRO cooperates with probability
2/7 following a dissimilar joint outcome (either [C, d] or [D, c]), and always
cooperates following a similar joint outcome (either [C, ¢] or [D, d]).

CHA: This is Champion’s strategy. It ranked second in Axelrod’s second tourna-
ment. CHA cooperates on the first 10 moves and plays tit-for-tat on the next
15 moves. From move 26 onward, CHA cooperates unless all of the following
conditions are true: The opponent defected on the previous move, the oppo-
nent’s frequency of cooperation is less than 60%, and the random number be-
tween zero and one is greater than the opponent’s frequency of cooperation.

ETH: This is Eatherly’s strategy. It ranked fourteenth in Axelrod’s second tourna-
ment, but proved quite robust in a tournament conducted privately by Eatherly
himself.> ETH cooperates on the first move and keeps a record of its opponent’s
moves. If its opponent defects, ETH then defects with a probability equal to
the relative frequency of the opponent’s defections.

THE HYBRID FAMILY

The members of this family share the common attribute that their decision
rules, as implied by the family name, are formed by the hybridization of other
strategic pairs. This family consists of one “pure” hybrid (bred from two pure
strategies) and one “mixed” hybrid (bred from two mixed strategies).

FRI: This is Friedman’s strategy, which ranked seventh in Axelrod’s first tourna-
ment. FRI cooperates until its opponent defects, after which FRI defects for
the rest of the game. Hence FRI is both nice and provocable, but completely
unforgiving. Its properties in other contexts are elsewhere discussed.” FRI’s
sequence of choices consists either in a string that is identical to CCC, orelse
in a string that is identical to CCC up to some move, and identical to DDD
thereafter. Thus FRI is a pure strategic hybrid.

TES: This is a strategy called “Tester,” submitted by Gladstein. TES finished only
46thin Axelrod’s second tournament, but proved adept at exploiting potentially
successful strategies, thus compromising their would be robustness. TES
defects on the first move. If its opponent ever defects, TES “apologizes” by
cooperating and plays tit-for-tat thereafter. Until its opponent defects, TES

2. Cited by Axelrod (1980b).
3. E.g. sce Harris (1969), Friedman (1971).
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defects with the maximum possible relative frequency that is less than 1/2, not
counting its first defection. TES appears somewhat “opportunistic” in charac-
ter. On the one hand, it attempts to exploit cooperative strategies without being
excessively provocative. On the other, it attempts to appease provocable
strategies, while retaining its capacity to retaliate. In sum, TES incorporates
two mixed strategies: defection with relative frequency up to one-halfand TFT.
Thus TES is a mixed strategic hybrid.

This completes a description of the 20 competing strategies in the inter-
active tournament and their classification by common characteristics. It
should be stressed that the familial organization employed herein is quite
heuristic; any such collection of strategies can be grouped in a large number
of ways.

For example, one might choose niceness (the property of never being the
first to defect) as a criterion of distinction. CCC, TFT, TTT, SHU, NYD,
GRO, CHA, ETH, and FRI are nice strategies; DDD, TAT, and TES can be
termed rude strategies (where rudeness is the property of always being the
first to defect). This leaves TQD, RAN, TQC, BBE, MEU, MAD, MAE, and
MAC unqualified, for these strategies are neither nice nor rude. They might
be assigned the predicate of nide (where nideness is the property of being
indeterminate with respect to primacy of defection).

In sum, although the five strategic families do not constitute a rigorous or
exhaustive system of classification, they are useful as heuristic aids in a
controlled experiment. A tournament whose population is of the wild variety
has no express nced of such groupings; as in Axelrod’s experiments, the idea
is to observe the competition of an unregulated population and to see which
strategies are successful in a free-for-all environment. In a tournament whose
population is of the domesticated and captive varieties, however, these
familial groupings allow the observation of the relative success of various
strategic shadings, whether across the spectrum of a single parameter in a
common program structure, or in terms of conceivable variations on a
common functional theme.

COMBINATORIAL ROBUSTNESS

The strategies played round-robin against one another and their twins. The
matrix of raw scores and the standings to which they give rise are shown in
Tables 3 and 4 respectively.*

4, The raw scores are based on single games of 1,000 moves except in the case of the
maximization family, whose intrafamilial scores were found to be abnormally distributed. Scores
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TABLE 3
Matrix of Raw Scores, Main Tournament

DDD TQD RAN TQC C€CC TFT TIT BBE SHU TAT

DDD 1000 1952 2992 3996 5000 1004 1008 1004 1176 499
TOD 762 1727 2634 3550 4470 1673 2324 1520 948 3580
RAN 502 1354 2243 3139 3972 2193 3129 2098 T3 2299
ToC 251 1095 1914 2685 3472 2706 3295 2436 537 1124
cce 0 795 1542 2292 3000 3000 3000 2700 3000 0
TFT 999 1673 2193 2701 3000 3000 3000 1036 3000 2250
TrT 998 1444 1874 2365 3000 3000 3000 2662 3000 1800
BBE 999 1690 2433 2766 3200 1041 3197 1033 1174 2367
SHU 956 1878 2913 3877 3000 3000 3000 974 3000 4529
TAT 11055 2219 3534 5000 2250 2800 2132 384 2000
MEU 947 1995 2899 3940 4920 1113 1538 1133 1180 4750
MAD 994 2037 3004 3912 4980 1024 1147 1013 1168 4972
MAE 932 1970 2903 3899 4838 1272 1624 2544 1183 4628
MAC 905 1878 2900 3750 4824 2965 2995 2665 1237 4556
NYD 334 764 1543 2305 3000 3000 3000 2637 3000 14
GRO 427 1233 2111 °2721 3000 3000 3000 2385 3000 1156
CHA 990 1541 2010 2281 3000 3000 3000 2660 3000 1697
ETH 999 1475 1875 2445 3000 3000 3000 2640 3000 1681
FRI 999 2023 2933 4033 3000 3000 3000 1027 3000 4991
TES 999 1688 2156 2731 4000 2999 4000 1044 2999 2246

The winner of the main tournament, by a comfortable margin, is MAC.
MAC is the most cooperatively weighted member of the maximization
family. Second place, by a narrower margin, goes to MAC'’s closest relative,
MAE. Third place is taken by the least-forgiving member of the tit-for-tat
family, SHU. Fourth place belongs to the pure hybrid, FRI. Fifth and sixth
places are occupied by members of the optimization family, CHA and ETH.

The average scores (per game) are distributed within the following limits.
Because the length of a game is 1,000 moves, the maximum achievable score
in any game is 5,000 points; the minimum, 0 points. These extrema occur if
one strategy defects 1,000 times, and its opponent cooperates 1,000 times.
This extreme situation actually obtained in two cases: DDD and TAT both
scored maximum points against CCC, which went scoreless against both.
While these two dismal outings by CCC contributed to its last-place finish,

betwecn maximization siblings are averaged over 100 games; between maximization twins, over
500 games.

iy
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MEU MAD MAE MAC NYD GRO CHA ETH FRI TES

1212 1024 1272 1380 3664 3292 1040 1004 1004 1004
920 777 1025 1098 4484 3023 2426 2405 748 1693
659 529 743 825 3968 2681 3200 3076 523 2161
405 307 479 570 3460 2586 3476 3280 248 2721
120 30 243 264 3000 3000 3000 3000 3000 1500

1108 1019 1267 2965 3000 3000 3000 3000 3000 2999

1143 1002 1204 2935 3000 3000 3000 3000 3000 1500

1148 1018 2989 3140 3242 2735 3215 3225 1027 1049

1125 1008 1263 1322 3000 3000 3000 3000 3000 2999
230 42 368 466 4984 3266 2837 2851 6 2251

2384 1003 2396 1887 4875 3241 2610 2294 955 1175

1181 1029 1266 1332 4940 3273 1193 1243 996 1013

2356 987 2594 2123 4852 3232 2870 3000 939 1312

1741 971 1849 1807 4814 3270 3000 2893 955 2926
165 45 217 279 3000 3000 3000 3000 3000 2500
586 468 672 670 3000 3000 3000 3000 3000 2995

2140 988 2215 2210 3000 3000 3000 3000 3000 2987

1614 988 2263 2505 3000 3000 3000 3000 3000 2999

1195 1031 1259 1325 3000 3000 3000 3000 3000 1007

1175 1008 1307 2951 2500 2995 3007 2999 1002 2998

neither of the two strategies that exploited CCC to the limit fared much better
than their victim overall.

A useful bench mark is the 3,000 point level, attained by both members
of any strategic pair that practices mutual cooperation for an entire game.
This occurred on 81 occasions in all possible encounters between nice
strategies (CCC, TFT, TTT, SHU, NYD, GRO, CHA, ETH, and FRI). Owing
to the mixture of nice, rude, and nide strategies in the population, no strategy
— nice or otherwise — was able to maintain an average score of 3,000 points.
MAC and MAE, which fared best with respective averages of 2,645 and
2,503 points per game, are neither nice nor rude, but nide. SHU, the best of
the nice strategies, managed an average of 2,492,

With respect to points allowed, CCC, TQC, NYD, and GRO surpassed
the 3,000 point bench mark. On this side of the ledger, the accomplishment
is of dubious merit. It indicates that these four strategies are the most
exploitable.
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TABLE 4
Main Tournament, Ranks and Scores

Points  Average Points Average Rank
Rank (Offense) Strategy  Scored Score Allowed Allowed  (Defense)

1 MAC 52901 2645 32054 1603 6
2 MAE 50058 2503 26891 1345 4
3 SHU 49844 2492 39699 1985 9
4 FR1 48823 2441 35403 1770 7
5 CHA 48719 2436 55874 2794 16
6 ETH 48484 2424 55270 2764 14
7/ MEU 47235 2362 22607 1130 3
8 TFT 47210 2361 47240 2362 11
9 TES 46804 2340 41789 2089 10
10 TTT 45927 2296 54057 2703 13
11 BBE 42688 2134 37343 1867 8
12 GRO 42424 2121 60594 3030 17
13 TOD 41787 2089 31267 1563 5
14 MAD 41717 2086 15274 764 2
15 DDD 40024 2001 14994 750 1
16 RAN 40007 2000 47291 2365 12
17 TAT 38676 1934 55636 2782 15
18 NYD 37803 1890 72783 3639 19
19 TQC 37047 1852 62922 3146 18
20 cCcC 36486 1824 75676 3784 20

Surprisingly, 4 of the top 10 strategies (CHA, ETH, TFT, and TTT) were
out-scored, on average, by their opponents. But crude averages can be
misleading. The relative success of these strategies lies in the precise distri-
butions and magnitudes of their individual scores.

MAC is the most successful strategy in the main tournament involving 20
strategies. Next, one must ask: How robust is MAC in the interactive
environment?

In his second tournament, Axelrod used an interesting method involving
step-wise regression to assess strategic robustness. He found TFT to be the
most robust strategy in that environment.

This study adopts a different methodology, that of combinatorial analysis.
Given a set of n elements, one can combine 7 elements from that set in n!/r!
(n—r)! distinct ways. In the interactive tournament, the number of strategies
(or elements) is 20. The 20 strategies, of course, can be combined in just one
way. But r can assume a range of theoretical values, from 1 = r s n. In practice,
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atleast two strategies are required for a competition to take place, so the value
r =1 is not applicable here.

The total number of possible subtournaments that can be conducted, from
all combinations of strategies for each applicable value of r, is 616,666. The
total number of subtournaments in which each strategy competes is 524,287.
In order to evaluate the results of this large number of subtournaments, the
following procedure is adopted. All subtournament combinations involving
r strategies are conducted, one at a time, for each value of r.

Let r have a given value. Suppose strategy S; ranks first in the first
subtournament conducted (for that r). Then strategy S, is awarded (r — 1)
points. Similarly, if strategy S; ranks second, then strategy S; fared better than
(r — 2) other strategies in that particular combination. Hence, strategy §; is
awarded (r — 2) points. This procedure is applied to all strategies in that
subtournament combination. In other words, each strategy in that particular
combination is awarded a number of points equal to the number of strategies
it betters. Suppose strategy S, ranks last. Because S, betters no strategies, it
is awarded no points.

The second subtournament combination involving r strategies (for the
same value of r) is then tried. Once again, points are awarded to each strategy
appearing in this combination, according to the number of other strategies it
betters, from (r — 1) points for the first-ranking strategy to zero points for the
last-ranking strategy.

When a given subtournament combination consists of nice strategies only,
they all achieve identical scores. In such cases, when r nice strategies draw,
they each receive (r — 1) points. And most generally, if any subtournament
involving r strategies sees p of these strategies tied for g™ place, then each of
the p strategies receives (r — g) points.

After C(20, r) different combinations are exhausted for the given r, each
strategy will have appeared in 19!/(r — 1)!(20 — r)! different subtournaments.
In order to determine which strategy is most successful for this value of r,
the efficiency of each strategy’s performance is calculated according to the
following formula. If a strategy wins each and every subtournament for this
value of r, its point awards would total

19Y/(r — 2)!(20 - r)!

This is the maximum number of points awardable to a strategy for any given
value of r. The relative efficiency of a strategy, then, is simply its actual point
award total divided by this maximum number. (The relative efficiency is then
multiplied by 100 for expression as an efficiency percentage.)
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TABLE 5
19 Appearances in 20 Subtournaments Involving 19 Strategies
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A specific example of the entire procedure is illustrated in Table 5 for the
20 different subtournaments conducted by forming all possible combinations
of 19 strategies.

For r = 19, there are 20 possible subtournaments. Each strategy appears
in 19 subtournaments, and can be awarded a maximum of 18 points in each
appearance. Hence, the ideal point award total is 19 x 18 = 342 total points.

Because MAC ranked first in all its appearances, it actually achieved this
ideal; hence, its efficiency is 100% in subtournaments involving 19 strategies.

MAE ranked second in 12 subtournaments; third in three subtournaments;
fourth in two subtournaments; sixth in two subtournaments. Hence, MAE
bettered 17 opponents on 12 occasions; 16 on three occasions; 15 on two
occasions; and 13 on two occasions. This tally accounts for MAE’s 19
appearances. MAE’s relative efficiency is therefore

[(12 x 17) + (3 x 16) + (2 x 15) + (2 x 13)]/342 = 308/342 = .901
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Thus MAE is 90.1% efficient in subtournaments involving 19 strategies.

In Table 5, notice that the nonzero entries tend to be clustered along the
main diagonal of the matrix. This general lack of dispersion throughout each
row indicates that a given strategy tends to achieve the same rank, or else to
perform within a narrow range of ranks, in each of its appearances. One
extreme case is MAC, which ranked first in the 19 subtournaments in which
it appeared. At the other extreme is MEU, whose rankings are distributed
across eight consecutive columns. In its 19 appearances, MEU attained a
range of ranks between third and tenth places inclusive.

The average rank dispersion in Table 5 (that is, the average number of
different ranks attained by a given strategy), is 4.6 of a possible 19 ranks per
strategy. Overall, the actual rank attainments are dispersed over less than 25%
of the field of possible rank attainments. This denotes an expected result;
namely, that in the 20 subtournaments involving different combinations of
19 strategies, the absence of any particular strategy from a given subtourna-
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ment does not drastically influence the relative success of the remaining
competitors. In other words, slight variations in the constitution of a large
population do not exert a pronounced effect on the bulk of its members’
performances.

By the same token, one observes an increasing dispersion of rankings as
the number of strategies per subtournament diminishes and the correspond-
ing number of possible combinations increases. In the distribution of rank-
ings for the 184,756 combinations of 10 strategies (in which each strategy
appears in 92,378 subtournaments and is absent from a like number) the
average rank dispersion reaches 9.6 of a possible 10 ranks per strategy, and
actual rank attainments are dispersed over 96% of the field of possible rank
attainments. The large number of combinations of 10 strategies allows great
variation in relative performance.

It transpires that MAC dominates all group sizes from 20 down to 7
competitors inclusive. MAE dominates groups of 6 and 5 competitors, and
FRI prevails in groups of 4 and 3. In the 190 subtournaments involving 2
strategies, wherein each strategy makes 19 appearances, FRI, SHU and TFT
are most efficient.

These results can be summarized as follows. A total of 616,666 different
subtournaments have been conducted by taking all combinations of the
population of competing strategies in all group sizes from 20 to 2 competi-
tors. In all, cach strategy appears in 524,287 subtournaments (the sum of its
appearances in each group size), and the efficiency of each strategy’s perfor-
mance was found for each group. A relative measure of robustness can now
be made by calculating each strategy’s overall efficiency across the entire
range of group sizes.

A strategy’s overall efficiency is simply the weighted average of its
relative cfficiencies in all groups. Suppose a given strategy appears in N,
subtournaments for all combinations C(i, 20) of i competitors, and attains a
relative efficiency of E; in that group. Then the given strategy’s overall
efficiency, E, is found by

E,= Y EixNi+ Yy N,
i i

(where the denominator = 524,287). The results of this calculation for all
strategies appear in Table 6.

Comparing the standings in Table 6 (overall efficiencies) and 4 (main
tournament results), it seems significant that the upper six and lower six
strategies maintain identical ranks in both cases. Given that Table 4 is the
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result of the unique subtournament involving the single combination of 20
strategies, and that Figure 1 is the weighted result of 616,666 different
subtournaments involving all combinations of all groups, then the upper and
lower third of the compiled standings of more than 600,000 subtournaments
are “determined,” as it were, by the unique outcome featuring the largest
group. It is a matter of speculation whether such determination would obtain
anew, and to what degree, in different strategic populations.

The combinatorial analysis of subtournaments concludes with a graph
(Figure 1) that illustrates how the efficiencies of the upper six strategies
change as a function of group size.

MAC and MAE are the sole top strategies whose efficiencies increase
uniformly with the size of the competing group. SHU and FRI, which rank
third and fourth respectively, do well because their efficiencies increase after
falling off sharply in smaller groups. CHA and ETH, which rank fifth and
sixth respectively, experience a less sharp early decrease in smaller groups,
a gradual increase in mid-sized groups, and a gradual falling off in larger
groups.

MAC, whose efficiency is lowest among the six top strategies at group
sizes of two and three, experiences a much sharper rate of increase than MAE.
Moreover, MAC continues to increase more sharply than MAE, SHU and
FRI, even after assuming the lead at the group size of seven. The larger the
competing population, the better MAC performs, relative both to its own
increasing efficiency and to the efficiencies of its competitors.

ELIMINATORY ECOSYSTEMIC COMPETITION

Next, the strategic population is subjected to a different measure of
robustness; namely, an ecological scenario.

The ecological scenario emerges as an offshoot of evolutionary game
theory.” Following Axelrod’s and Hamilton’s (1981) attempt to find an
cvolutionarily stable strategy for iterated prisoner’s dilemmas, Boyd and
Lorberbaum (1987), Axelrod and Dion (1988) and Marinoff (1990) have all
shown, in different ways, that the prisoner’s dilemma is not susceptible to
evolutionary modelling in the original Maynard Smith sense. The ecological
scenario, however, provides an interesting alternative perspective on strate-
gic robustness. Axelrod’s (1980b) scenario simulates “survival of the fittest,” by
assuming that the strategies’ scores represent relative numbers of offspring,
which continue to compete in subsequent “generations” of the tournament.

5. E.g. see Maynard Smith (1982).
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TABLE 6
Overall Efficiencies: 524,287 Appearances in 616,666 Subtournaments

Number of Competitors
2 3 4 5 6 7 8 9 10 11

MAC 526 617 687 740 780 813 839 8.2 882 901
MAE 789 789 795 793 795 798 803 808 813 818
SHU 100 845 782 763 763 712 784 796 808 818
FRI 100 874 813 785 7158 W2 M3 T4 TS T4
CHA 737 673 673 691 712 730 744 756 766 714
ETH 737 T16 696 700 7.0 721 731 739 747 753
TFT 100 804 743 707 689 682 679 679 679 680
TES 684 746 733 712 700 694 689 685 681 677
MEU 632 687 681 675 671 667 665 664 664 665
TTT 789 . 649 594 - 5717 - 5%0: 570: -571- -57%. 511 3T)
MAD 421 424 411 418 405 404 401 393 393 387
GRO 632 491 428 399 408 402 392 390 385 382
TQD 368 418 406 399 394 390 385 380 378 374
BBE 53 135 204 249 279 296 309 319 325 333
DDD 421 368 368 351 328 318 305 293 283 275
RAN 421 371 352 16 321 306 - 295- 285 277 210
TAT 421 316 306 290 272 256 243 230 218 208
NYD 526 304 216 186 172 165 162 157 153 150
TOC 316 284 218 193 167 144 135 128 117 111
CCC 474 257 180 134 119 109 9.8 9.2 85 79

A straightforward mathematical notation is introduced in order to show
explicitly how the interactive ecological algorithm functions.

(AvB), means “the relative number of " generation offspring produced
by A-strategists in competition against B-strategists.” Thus (AvB), is strategy
A’s tournament score against strategy B.

(TOT),, , means “the total relative number of n™ generation offspring
produced by A-strategists in competition against all strategists”; that is:

(TOT),, , = (AVA), + (AVB), + . ... + (AVZ),

for Z different strategies in the environment. Thus (TOT),, , is strategy A’s
total score in the tournament.

The relative frequency of A-strategists in the initial generation is the ratio
of strategy A’s total offensive score ([TOT],, ,) to the sum of all strategies’
total offensive scores. In the initial generation, all relative frequencies are
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Number of Competitors
12 13 14 15 16 17 18 19 20 E,

918 936 952 966 979 989 996 100 100 88.8
824 830 836 843 851 861 878 9.1 90.0 816
828 836 845 854 864 874 886 898 850 812
778 780 783 786 789 794 802 816 800 777
781 788 794 800 804 B80S 803 795 750 76.7
757 761 763 764 763 760 754 743 700 747
679 678 675 672 668 665 663 658 60.0 679
673 668 662 657 649 640 626 608 550 678
665 666 667 66.7 667 666 666 667 650 665
570 569 S68 -S66 565 562 557 547 500 570
382 382 . 474 313371 363 ATT 365 300 389
380 375 372 374 374 385 397 401 400 384
372 370 368 368 369 368 368 374 350 377
342 351 361 371 280 387 398 430 450 329
265 257 253 240 238 B 224 222 250 281
262 257 254 249 250 253 243 246 200 276
198 188 181 175 167 157 158 152 150 215
146 144 141 138 134 129 128 114 100 152
10.6 9.6 8.7 8.0 6.8 6.1 4.7 5.6 50 116

7.4 6.9 6.5 5.8 53 4.1 32 0.9 0.0 8.4

computed directly from the tournament matrix of raw scores. Then, for each
subsequent generation, the recurrence relation

(AVB), . 1 = (AVB),[(TOT), JJ(TOD)a, o + (TOT)g, 1)

is used to compute the new matrix of offspring, from which each strategy’s
relative frequency in that generation can be found. This algorithm is applied
to all strategies in the environment, and is iterated for a sufficient number of
gencrations, until all rates of growth (and decline) subside to a quiescent state.

Note that if the n™ generation ratio of offspring, ([AvB],)/([BvA],), has the
numerical value a/b, then the (n + 1)* generation ratio will be

[(AVB), , 1 VI(BVA),, 1] = @/B)(TOT)a, )/ [(TOT)g, ]

This satisfies the two principal requirements of Axelrod’s model; namely,
that the ratio of offspring between two competing strategies in any future
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Efficiency
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—— MAC —+— MAE —¥ SHU -9 FRI —* CHA —% ETH

Figure 1: Most Efficiert Combinatoric Performances: All Subtournaments, 2-19
Competitors

generation be proportional to: (a) their ratio of offspring in the previous
generation, and (b) their relative frequencies in the previous generation.

The relative frequency of each strategy’s progeny in a given generation
is expressed in parts per thousand (ppf) of the overall population in that
generation.

The ecological scenario involving the 20 strategies of the interactive
tournament attains a stable state after about 325 generations. That is to say,
following the 325" generation, the rate of change has slowed to the extent
that all strategies’ cumulative increases or decreases in relative frequency are
less than one ppt over the next several generations. Although minor fluctua-
tions continue to take place in increments (or decrements) of parts per ten
thousand per generation and less, these fluctuations are negligible on the
scale of the scenario.

The results of the ecological scenario involving 20 strategies are displayed
in Figure 2, which shows the initial (parent generation) and stable (2"
generation) frequencies for each strategy. The strategies appear, from left to
right, in descending order of their stable frequencies.

It is clear from Figure 2 that MAC, which has the largest initial frequency
(60 ppt), experiences the greatest increase, to a stable frequency of 142 ppt.
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Figure 2: Ecology of Main Tournament: Initial versus Stable States

This represents an increase of 82 ppt over 325 generations, or an average
growth rate of 0.25 ppt per generation. And MAE, which has the second
largest initial frequency (57 ppt), experiences the second greatest increase,
to a stable frequency of 119 ppt. MAE’s average rate of growth is thus 0.19
ppt per generation.

Obviously, the size-order of the initial frequencies is identical to the rank
order of the tournament, because a strategy’s initial frequency is its total
tournament score divided by the sum of all strategies’ total tournament scores,
and this dividend remains constant (for a given matrix of raw scores).
However, the size-order of the stable frequencies does not necessarily cor-
respond to that of the initial frequencies. For example, SHU ranks third in
initial frequency (56 pp!), but slips to a distant fourth in stable frequency (67
ppt). SHU is overtaken by MEU, which ranks only seventh in initial fre-
quency (53 ppt), but third in stable frequency (98 ppf). SHU’s growth rate is
0.034 ppt per generation; MEU’s is 0.14 ppt per generation,

That MAC, MAE and MEU produce the greatest relative numbers of
progeny, respectively, is a testament not only to their individual fitnesses, but
also to the overall fitness of the maximization family in this ecosystem.
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At the other end of the spectrum, it is probably not a coincidence that the
greatest declines in frequency are experienced by CCC (- 41 ppt), NYD
(=41 ppt), and TQC (- 38 ppt). Not only do these strategies have the lowest
initial frequencies, but also, perhaps significantly, their order of ecological
decline corresponds exactly to their order of points allowed in the interactive
tournament. Moreover, CCC has apparently become “extinct” because, from
the 10th generation onward, its relative frequency is zero ppt.

Given that one of the strategies (CCC) has become extinct in this ecosys-
tem, it scems reasonable to ask another question: What would happen if the
19 surviving strategies were to reestablish themselves in a new ecological
habitat, beginning with the same initial conditions and subject to the same
generative algorithm save that all CCC-strategists have disappeared from the
population?

The scenario is thus regenerated in a new ecosystem of 19 surviving
strategies, with the following result. In this ecosystem, rates of growth and

- decline subside to negligibility after about 450 generations. Again, MAC has
the largest initial frequency (62 ppr), and experiences the greatest increase,
to a stable frequency of 176 ppt. SHU, with the second largest initial
frequency (60 ppt), ranks fourth at stability (98 ppr). MAE, which has the
sixth largest initial frequency (58 ppt), vaults past FRI, CHA, ETH, and SHU
to rank second at stability (138 ppt). And MEU, initially in a three-way tie
for cighth place (55 ppt), finishes third at stability (99 ppr). The maximization
family continues to exhibit reproductive fitness in this ecosystem.

This procreative model is clearly sensitive to perturbation (by the removal
or, inversely, by the addition of a competing strategy). The term “ecology”
seems well-chosen by Axelrod in that the extinction of one strategy has
palpable repercussions on the interactions among the 19 survivors. In the
original ecosystem, both MAE and MAC enjoy comparatively high repro-
ductive success in competition with CCC. As soon as CCC becomes extinct,
MAE falls from second to fourth place in initial frequency; MEU, from sole
possession of seventh to a three-way tie for eighth. That MAE and MEU now
overtake numerous competitors in order to finish second and third overall
behind MAC, illustrates their fitness in regaining lost reproductive ground.

The perturbation also results in the extinction of two more strategies: in
this new ecosystem, NYD’s progeny vanish after the 10th generation; TQC’s,
after the 11th. Once again, the first strategy to become extinct in this
ecosystem is the strategy with the lowest initial frequency (NYD, 41 ppt).
But TQC, which disappears one generation later, shares the second-lowest
initial frequency with TAT (43 ppt). Although TAT experiences a sharp
decline, it manages to stabilize at 8 ppt.
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The eliminatory process is continued by establishing another ecosystem,
composed of the eighteen surviving strategies after the demise of NYD. This
ccosystem is similarly procreated until stability is attained, whereupon
another new ecosystem is formed by deleting the next strategy to become
extinct. This climinatory process is repeated to its eventual conclusion.

Not surprisingly, the number of generations required to stabilize an
ecosystem is not a smoothly decreasing function of the number of competing
strategies. Although such a trend is observable overall, many individual
reversals of that trend occur. Because the number of generations required to
attain stability diminishes only in tendency with the number of competing
strategies and seems to depend critically on the particular combination of
strategies in competition, one can conclude that this eliminatory process is
somewhat stochastic.®

In the ecosystem involving 18 strategies (following the extinction of
NYD), SHU holds the greatest initial frequency (65 ppt), and MAC and FRI
are tied with the second greatest (64 ppf). FRI experiences the largest
increase, however, and realizes the greatest stable frequency (154 ppt),
followed by SHU (152 ppf) and MAC (144 ppt). MAE initially ranks seventh
(60 ppr), but climbs to fourth at stability (114 ppr), while MEU initially ranks
ninth (56 ppr) but finishes fifth (79 ppf). Thus MAC, MAE, and MEU
continue to perform quite well, but they slip to third, fourth, and fifth places
with respect to magnitudes of stable frequencies.

A glance at the tournament matrix of raw scores (Table 2) affords an
explanation for what is taking place. In the context of the tournament, the
maximization family fared extremely well against CCC and NYD. In fact,
each member of the maximization family realizes its two highest scores
against these very strategies. But in the ecological context, this large margin
of success not only contributes to the rapid extinction of the weaker strate-
gies, but also proves detrimental to the exploitive ones.

In the tournament, for example, MAC out-scored CCC by 4,824 to 264.
So in the ecological scenario, their parent generation ratio is thus 4,824:264,
or about 18:1 in favour of MAC. And in the parent generation of the 20
strategy ecosystem, their respective initial frequencies are 60 and 41 ppt of
the overall population. Thus the ratio of their second-generation offspring is

6. An exponential curve fit, which gives the number of generations required to stabilize the
population frequencies as a function of the number of strategies in competition yields the result
y=26e""" with an unimpressive correlation = .82. However, this equation offers one possible
explanation as to why Axelrod’s ecosystem does not attain stability after 1,000 generations. With
63 competitors, the equation predicts that 155,000 generations are required to attain stability. Of
course, any such extrapolation remains highly conjectural.
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(4,824 x 60):(264 x 41), or about 27:1 in favour of MAC. In the tournament
context, MAC exploits CCC rather heavily (as do many other strategies) with
no dire consequences to itself. But in the ecological context, MAC’s heavy
exploitation of CCC has a three-fold result.

First, MAC benefits from a proportionately large increase in progeny.
Second, CCC, which experiences a generally poor differential procreative
rate in the ecosystem as a whole, is unable to stave off elimination. Third, in
subsequent ecosystems, MAC no longer benefits from its high procreative
rate in competition against CCC, because CCC is extinct. In future ecosys-
tems, MAC must compete more frequently against strategies with greater
procreative fitness than CCC, strategies that MAC cannot exploit as readily.

This is a classic instance of overexploitation of a resource to the eventual
detriment of the exploiters. All strategies that overexploit CCC (such as
DDD, TQD, TAT, TES, and the maximization family) abet CCC’s rapid
extinction and, in so doing, deprive themselves of a competitor that allows
them to create large relative numbers of progeny. When a new ecosystem is
established with CCC absent from the environment, the population frequen-
cies undergo an ecological shift such that those strategies that overexploited
the extinct competitor now experience corresponding declines in their pro-
creative rates. In future ecosystems, former exploiters may themselves
become the victims of exploitation.

In the ecosystem with 17 strategies (following the extinction of TQC), the
stable order is once again FRI (136 ppf), SHU (130 ppt), MAC (129 ppt),
MAE (108 ppt), and MEU (86 ppt). The population gaps between these upper
five strategies have closed, compared with the previous ecosystem. And now,
with TAT’s extinction, one observes that, in the first four ecosystems, the
lower four strategies of the tournament have become extinct in reverse order
of their tournament ranks from 20th to 17th (CCC, TQC, NYD, TAT).

TAT’s extinction (combined with the previous extinctions) results in a
reordering of initial frequencies in the next ecosystem, which precipitates
new stable standings. In the ecosystem with 16 strategies, CHA (76 ppf), ETH
(75 ppt), and TFT (71 ppt) are most successful, both initially and at stability,
realizing eventual frequencies of 125, 122, and 102 ppt respectively. TTT
places fourth at stability (95 ppf), and SHU manages a tie for fifth with TES
(93 ppr). Evidently, TAT’s extinction results in a complete upheaval in the
environment with new strategies in the ascendancy and previously successful
strategies in decline. MAC slips to seventh at stability (86 ppr); MAE, ninth
(66 ppt). Moreover, this ecosystemic competition requires the greatest num-
ber of generations (more than five hundred) to settle down. In addition, the
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precedent for extinction is broken. DDD (which ranks ahead of RAN in the
tournament) now vanishes from the ecology.

In ccosystems involving from 15 to 10 competitors, CHA and ETH
continue to predominate at stability, while MAC, SHU, TFT, and TTT also
tend to flourish. In ecosystems involving from 9 to 5 competitors, TFT ranks
first four times and second once. The ecosystemic competition of seven
strategies is won by TES. In this competition, TES experiences the greatest
increase of any strategy in any ecosystem — from an initial frequency of 150
ppt to a stable frequency of 397 ppt after 36 generations. But TES becomes
extinct in the ecosystem of 5 competitors.

The final ecosystem is composed of four nice strategies: TFT, SHU, GRO,
and ETH. In such a system, all future generations of progeny maintain
respective ratios of 1:1. Thus, initial frequencies and stable frequencies are
identical and equal to one another, and stability is attained in the parent
generation. This situation would, of course, obtain in an ecosystem of any
size, providing that it were composed exclusively of nice strategies. The other
nice strategies, however (namely CHA, TTT, FRI, NYD and CCC), are
already extinct, because their respective combinations of attributes were
disfavoured in previous ecosystemic competitions.

The nine earliest extinct strategies have aggregate decreases in frequency,
but three of the last four to become extinct, as well as one of the survivors,
also have aggregate decreases. Thus, although an aggregate increase in
frequency indicates that a competitor does not face early extinction, neither
is it a passport to ultimate survival.

One might find the survival of GRO perplexing. GRO experiences an
increase in only 2 of the 16 ecosystemic competitions that result in an
extinction; nonetheless GRO survives to the final ecosystem. GRO does not
excel in any of these competitions and ranks near the bottom in all of them.
Yet GRO is tenacious enough to survive them all, apparently by dint of
consistent mediocrity. Because GRO is never highly successful, it cannot be
said to depend on any particular strategies for its success. Hence GRO is not
subject to the vicissitudes of overexploitation, which cause the rise and fall
of many of its more successful, and later extinct, competitors.

Similarly, TES is the last strategy to become extinct. Despite its superla-
tive performance in the one ecosystemic competition, TES also has an ag-
gregate decrease in frequency.

Then again, one finds that ETH has the largest aggregate increase in
frequency, but ETH wins only two of the eliminatory ecosystemic competi-
tions. Moreover, CHA has a larger aggregate increase than three of the four
survivors, yet CHA eventually succumbs to extinction.
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TABLE 7
Top Five Strategies, With Respect to Stable Frequency

First Second Third Fourth Fifth
Competitors ~ Place Place Place Place Place
20 MAC MAE MEU SHU TES
19 MAC MAE MEU SHU FRI
18 FRI SHU MAC MAE MEU
17 FRI SHU MAC MAE MEU
16 CHA ETH TFT TTT SHU
15 CHA ETH TFT SHU TEE
14 CHA ETH MAC,SHU — TFT
13 CHA MAC SHU ETH TFT
12 CHA ETH MAC TTT TFT
11 ETH CHA i TFT TES
10 ETH CHA TTT GRO MAC
9 TFT ETH TES TTT CHA
"~ 8 TFT,ETH,SHU - .- GRO CHA
7 TES TFT,SHU,ETH - - GRO
6 TFT,SHU,ETH - — TES GRO
5 TFT,SHU,ETH o - GRO TES

Table 7 illustrates the waxing and waning fortunes of the top five ranking
stratcgies at stability for each of the ecosystemic competitions.

Table 7 shows that, in general, the maximization family is most successful
in the larger ecosystems; the optimization family, in the medium-sized
ecosystems; and the tit-for-tat family, in the smaller ecosystems. But no
single strategy emerges as most robust overall if the sole criterion of robust-
ness is stable frequency. Indeed, although several strategies claim varying
degrees of success in different sizes of ecosystem, it does not seem possible
to ascribe a coherent order of robustness from one criterion alone.

One criterion suffices for Axelrod, who conducts a single ecosystemic
competition among 63 strategies. Based solely on its magnitude of relative
frequency in the population, TFT wins that particular competition. However,
given what transpires in eliminatory ecosystemic competitions in the envi-
ronment of the interactive tournament, it seems reasonable to speculate that,
if a similar range of competitions were conducted in Axelrod’s environment,
no single strategy would win them all. It seems rather more likely that one
would observe a similar waxing and waning of strategic procreativity in dif-
ferent ecosystems.
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ECOLOGICAL ROBUSTNESS

The question remains: How can one assess robustness across the range of
ecosystemic competitions? Clearly, there is no unique way to accomplish this
task. One possible method consists in a parametric approach. The parameters
themselves are quantifications of vital attributes of robustness in the ecolog-
ical context. In other words, the above question is answered in three stages.
First, vital properties of an ideal ecologically robust strategy are posited.
Second, the varying extents to which the competing strategies embody these
properties are quantified according to appropriate ranking schemes. Third,
these quantifications are enlisted as parameters that reflect each strategy’s
combined embodiment of vital properties and that permit a corresponding
overall index of robustness to be assigned.

This experiment uses four parameters drawn from the ecological scenario.
Four vital properties of an ecologically robust strategy are posited and their
corresponding parameters are defined as follows:

1. The ideal ecologically robust strategy’s progeny are able to avoid extinction.
Hence the first parameter is survival or ecosystemic longevity. Each strategy
is ranked in ascending order of the total number of generations during which
ils progeny avoids extinction.

2. The ideal ecologically robust strategy is reproductively fit; that is, its number
of progeny increases in future generations. Hence the second parameter is
overall average increase in relative population frequency between initial and
stable states of every ecosystem. Each strategy is ranked in ascending order
of the quotient of its aggregate frequency and the number of generations its
progeny survives. This quotient is thus a measure of a strategy’s avérage
increase in relative frequency, in parts per thousand of the population per
generation extant. (A negative increase, of course, indicates a decrease.)

3. The ideal ecologically robust strategy maintains a consistently high stable
frequency from one ecosystemic competition to another. Hence the third
parameter is overall stable efficiency. A strategy’s stable efficiency is com-
puted in the following way. Suppose that strategy A has the /™ -largest stable
frequency in an ecosystemic competition involving k competitors (including
itself). Thus, strategy A achieves a higher stable frequency than (k — j) other
competitors. Its best possible performance (if it finishes first) entails achieving
a higher stable frequency than (k — 1) other competitors (excluding itself).
Hence, strategy A’s relative stable efficiency in this competition is (k —j)/(k —
1). Strategy A’s overall relative stable efficiency, in n ecosystemic competi-
tions, is therefore

3~/ - 1),
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which is the net ratio of the number of competitors it betters to the number of
competitors it faces. Each strategy is ranked in ascending order of its overall
stable efficiency.

4. The ideal ecologically robust strategy shows adaptivity across the range of
ecosystemic competitions, by means of consistent improvement within them.
That is, it consistently increases its frequency, relative to other competitors,
thereby tending to improve its position in a given competition. Hence the
fourth parameter is the sum of the fractions of competitors overtaken in each
competition divided by the total number of competitions. If a strategy over-
takes j,/k, competitors in its first competition, j,/k, competitors in its second
competition, and so on, up to and including j/k, competitors in its n®
competition, then that strategy’s average adaptivity is:

(1/n) Zjiﬂf;-

Each strategy is ranked in ascending order of the signed magnitude of its
adaptivity whose dimensions are: average fraction of competitors overtaken
per competition. (A negative adaptivity obtains when a strategy is overtaken
by more competitors than it overtakes.)

Now one has four different ranking schemes that order the strategies in
terms of the four parameters: longevity, fecundity, stability, and adaptivity.
These rank pararﬁetcrs are abbreviated respectively as R, R;, R, and R,. With
each strategy is then associated a unique set of four rank numbers that
correspond to that strategy’s particular values for {R, R, R, R,}.

A given strategy’s index of robustness, I, is evaluated in the following
way. Each of its four rank numbers is subtracted from 20 to give the number
of competitors it betters according to each parameter. These four new
numbers are then added and their sum is divided by 76 (which is the total
number of competitors it could have bettered overall; i.e., 19 competitors in
each of four schemes). This normalized quotient is the given strategy’s index
of robustness. That is,

I, =[80—(R,+R;+R,+ R,)]/76.

The ideal ecologically robust strategy would rank first in each scheme,
and its index of robustness would then attain the maximum value of unity.
An utterly nonrobust strategy would rank 20th in each scheme, and its index
of robustness would take on the minimum value of zero.

The magnitudes of the four parameters, their corresponding rank numbers,
and the resulting indices of robustness are displayed in Table 8.
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According to this parametric approach, MAC is the most ecologically
robust strategy, followed by SHU, ETH, TFT and MAE, to round out the top
five. Although MAC became extinct earlier than its most robust rivals (which
rank first in longevity compared to MAC’s ninth), these rivals prove com-
paratively less adaptive. In fact, SHU, ETH and TFT are all negatively
adapted; that is, they are surpassed, on average, by a larger fraction of
competitors than they surpass.

These parameters are quite revealing with respect to the competitive
performance of a given strategy, as indeed they must be if they are to provide
a reasonable quantification of ecological robustness.

Examine the case of ETH, for example. ETH shares the greatest longevity,
produces the largest average number of offspring per generation, and is most
efficient in overall stable frequency rankings. Given this outstanding combi-
nation of attributes, one might expect ETH to win a substantial number of
ecosystemic competitions. Yet a glance at Table 8 shows that ETH is the
outright winner in only two of the competitions. Moreover, those competi-
tions do not involve a relatively large number of strategies (11 and 10
strategics, respectively). In fact, in Table 8, ETH is conspicuously absent
from the top rankings in competitions involving 20, 19, 18 and 17 strategies.
Why does ETH not fare better?

The fourth parameter provides an explanation. ETH turns out to be one
of the least adaptive strategies. ETH’s great longevity, prodigious fecundity,
and high efficiency do not reveal its principal weakness: In larger groups,
ETH is readily overtaken by a substantial fraction of competitors. These
competitors, which produce fewer progeny on average than ETH, and which
better fewer strategies overall than ETH, are nevertheless more reproduc-
tively fit than ETH when the competitive traffic is heaviest. Thus, notwith-
standing ETH’s fortitude with respect to three attributes, ETH’s robustness
is compromised by an acute lack of adaptivity in large groups.

The seven most robust strategies, not surprisingly, are also the seven most
fecund (although not in that order). The three most robust strategies are also
the most efficient (although again, not in that order). Overall, fecundity and
efficiency are the most closely correlated pair of attributes. But the two most
robust strategies, MAC and SHU, show respective improvements in rank
with respect to this attribute pair. MAC ranks third in fecundity and second
in efficiency; SHU, forth in fecundity and third in efficiency. This type of improve-
ment, however slight, denotes an interesting performance characteristic —
namely, an effective frequency distribution of progeny across the range of
ecosystemic competitions.
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Average relative frequencies, by definition, do not take instantaneous
changes in frequency (from one competition to another) into account. MAC
experiences an increase in progeny in 9 of its 12 competitions; SHU experi-
ences an increase in 11 of its 17 competitions. Both MAC and SHU achieve
frequency distributions which, in terms of rank efficiency, enable these
strategies to realize the beneficial potential of their increases and to minimize
the detrimental effects of their decreases.

In contrast, CHA ranks second in fecundity, but slips to fourth in effi-
ciency. Although CHA's average increase in progeny is greater than that of
MAC and SHU, CHA’s distribution of instantaneous increases is less effec-
tive. CHA experiences an increase in progeny in 10 of its 15 competitions
(and no change in one competition), but its largest increases occur in
competitions in which a smaller increase would confer the same efficiency
rank. In other words, CHA produces more offspring than it requires in some
situations and not enough in others. CHA is nonetheless relatively robust,
although its robustness is severely compromised by its poor adaptivity.

The point to be made here is that, notwithstanding instances of pair-wise
correspondence between R, and R,, these two rank parameters reflect quite
distinct attributes. A given strategy’s difference in rank between these param-
eters (or lack thereof) is indicative of a particular performance characteristic.

Table 9 compares strategic robustness in the combinatorial sub-
tournaments with strategic robustness in this ecological scenario. The order
of overall robustness is determined by taking the average of each strategy’s
rank with respect to combinatorial and ecological robustness. Because MAC
ranks first in both categories, it is obviously most robust overall in the °
interactive environment. SHU is deserving of second overall, and MAE
retains third overall despite its decline in the ecological scenario.

Once again, it must be stressed that this parametric approach to the
evaluation of ecological robustness is by no means a unique determinant;
many other schemes could be conceived and applied. The addition or deletion
of a single parameter can alter the standings, either mildly or drastical ly. Al-
though more (or fewer) than four parameters could be used, the result in this
case seems reasonably unbiased. At the least, an attempt has been made to
neutralize or otherwise balance any bias that inheres in such a quantification.

The ecological scenario is clearly rich in interactions and implications,
and many more such models can and should be developed within the
evolutionary paradigm. The main difference between ecological and evolu-
tionary modelling is, as Axelrod (1980b) points out, that the former does not
admit of any “mutational” influences. In other words, the ecology unfolds
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TABLE 9
Overall Strategic Robustness

Combinatorial Ecological Overall
Rank Robustness Robustness Robustness
1 MAC MAC MAC
2 MAE SHU SHU
3 SHU ETH MAE
4 FRI TFT ETH
5 CHA MAE TFT, CHA
6 ETH MEU, CHA -
T TFT — FRI
8 TES FRI MEU
9 MEU MAD TES
10 TTT TES MAD
11 MAD TTT TTT
12 GRO DDD GRO
13 TQD GRO DDD, TQD
14 BBE TQD -
15 DDD BBE BBE
16 RAN TAT RAN, TAT
17 TAT RAN -
18 NYD TQC TQC
19 TQC CCC NYD
20 CCC NYD CcCcC

strictly from initial conditions with no behavioral modifications made to the
strategies involved. However, it is evident that, on the basis of strategic
interaction alone, and in the absence of strategic modification, the complex-
ities of eliminatory ecosystemic competition necessitate correspondingly
complex methods of assessing robustness.

CONCLUSIONS

The results of the interactive tournament provide a number of empirical
corroborations of, as well as certain departures from, Axelrod’s principal
findings. Five conclusions are briefly presented here.

First, one observes the relative success of cooperative maximization rules.
Following his first tournament, Axelrod showed that, had DOWNING’s
initial view of its opponent’s responsiveness been more optimistic, then
DOWNING would have won and won by a large margin. DOWNING is a
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TABLE 10
The Costs of Exploitation
Average Tournament
Versus CCC Versus TFT 1/2 (CCC + TFT) Average
MAC 4826 2970 3898 2645
MAE 4848 1272 3060 2503
MEU 4900 1148 3024 2362
MAD 4986 1041 3014 2086

reactive maximization strategy whose initial probabilistic weights are iden-
tical to those of MEU. The interactive tournament provides a clear indication
that the success of a maximization rule against a broad spectrum strategic
population increases strictly with its propensity to cooperate. In terms of
combinatorial, ecological and overall robustness, MAD, MEU, MAE, and
MAC finished in ascending order (10th, 8th, 3rd and 1st) of their initial
cooperative weightings (1/10, 1/2, 5/7, and 9/10), respectively.

Second, one can specify a single condition that accounts for the relatively
strong performances of MAC and MAE (and the relatively weak showings
by MEU and MAD). Following his second tournament (which contained a
field of 62 entries), Axelrod concluded that “being able to exploit the
exploitable without paying too high a cost with the others is a task which was
not successfully accomplished by any of the entries.” In the interactive
tournament, MAC is able to accomplish this task to great advantage.

Table 10 illustrates the fortunes of the maximization family against an
utterly exploitable strategy (CCC), and against a highly provocable (and
therefore nonexploitable) strategy (TFT). MAD, MEU, and MAE are able to
exploit CCC to slightly greater extents than MAC. But MAD, MEU, and
MAE all incur a vastly higher cost against TFT, whereas the MAC-TFT pair
attains a score (tied at 2,970 points) comparable to that attained by two nice
strategies (tied at 3,000 points). MAC’s advantage lies in its overwhelmingly
cooperative weighting, which allows it to accomplish Axelrod’s formerly
hypothetical task.

Third, Axelrod found niceness to be a key ingredient of successful
performance. In the interactive environment, nide strategies placed first and
third in terms of overall robustness. (Recall, a nide strategy is neither nice
nor rude; i.e., is indeterminate with respect to primacy of defection.) So,
although rudeness again leads to failure, one finds that nideness —as opposed
to niceness —along with provocability, forgiveness, and exploitiveness, can
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TABLE 11
The Maximization Family versus Itself

MAC  MAE MEU MAD  Family Average = Tournament Average

MAC 1807 1849 1741 971 1592 2645
MAE 2123 2594 2356 987 2015 2503
MEU 1887 2396 2384 1003 1918 2362
MAD 1332 1266 1181 1029 1202 2086

also conduce to success.

The performances of the most robust members of the tit-for-tat family,
namely SHU, TFT and TTT, afford an insight into the cause of this shift in
criteria. Axelrod (1980a) asserts that, had TTT been entered in his first
tournament, it would have won. In that case, the order of finish of these
members would have been: TTT, TFT, SHU. Note that the ascending order
is one of strictly increasing forgiveness. However, in the interactive tourna-
ment, these strategies’ ascending order of finish is exactly reversed: SHU,
TFT, TTT. This order is one of strictly decreasing forgiveness. From this
comparison, one can infer that the environment of the interactive tournament
is much harsher than that of Axelrod’s first tournament. In a friendly envi-
ronment, one would naturally expect forgiveness to conduce to success; ina
harsh environment, one would just as naturally expect a lack thereof to
succeed. Thus one can conclude that nideness is not necessarily preferential
to niceness; nideness merely supersedes niceness under certain conditions.

And a caveat to the maximization family’s particular brand of nideness is
expressed in a rather significant phenomenon: A maximization family mem-
ber always reacts to an occurrence of joint cooperation by becoming nice
instead of nide. If one instance of mutual cooperation occurs, a maximization
strategy will never be the first to defect thereafter.”

Fourth, Axelrod argued cogently that, notwithstanding its victories in both
his tournaments, TFT is not the “best” rule for iterated prisoner’s dilemmas.
Axelrod gave examples of rules that would have won his first tournament,
had they been submitted. And the interactive tournament affords an example
of a competitive population in which TFT is surpassed by a number of other
strategies; some hitherto untried, others present in previous tournaments.

7. In terms of this family’s decision calculus, every instance of mutual defection has the effect
of lowering the value of the expected utility of further defection. Thus mutual defection actually
increases the maximization strategy’s propensity to cooperate.
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Axelrod’s overriding observation is that “there is no best rule indepen-dent
of environment.” The case of MAC brooks no exception, and contains an
irony well worth noting. If one seeks an environment in which MAC is not
the best rule —indeed, in which MAC is next-to-worst —then one need look
no further than the environment of the maximization family itself. As Table
11 illustrates, MAC performs dismally against its own siblings and twin.

Fifth, the most general reason for MAC’s undistinguished intrafamilial
performance is indirectly cited by Axelrod (1980b, 401-2), albeit in a
different context: “TIT FOR TAT could have been beaten in the second round
[tournament] by any rule which was able to identify and never cooperate with
RANDOM, while not mistaking other rules for RANDOM.” Indeed, an
examination of the maximization family’s scores against the probabilistic
family (see Table 3) reveals that the maximization calculus readily identifies
strategies that play randomly (regardless of their weightings), and prescribes
perpetual defection against them during the deterministic phase of its play.
At the same time, however, maximization family members exhibit precious
little recognition of one another. Owing to their random play during the first
one hundred moves, most members naturally but mistakenly identify their
familial opponents as random strategies, and proceed to defect perpetually
against them as well.

Only the MEU-MEU and MAE-MAE twins seem able to achieve eventual
perpetual mutual cooperation. This begs a vital question: Why do the MAC-
MAC twins, whose initial mutual cooperativeness is probabilistically the
highest in the family, fail to achieve perpetual mutual cooperation even
sooner than their less cooperatively-weighted siblings? .

The complete answer to this ironic question is not trivial. It lies in a
detailed investigation of the intricate and counterintuitive properties of the
event matrix itself. Such an exposition is reserved for a future report. Suffice
to say that the more cooperative its weighting, the less reliable is the
performance of a maximization strategy against its twin.

Despite its intrafamilial difficulties, the cooperatively weighted maximi-
zation of expected utility is demonstrably robust in the relatively harsh
environment of the interactive tournament. Accumulated evidence suggests
that it could have won both of Axelrod’s tournaments as well.* MAC is nide,
forgiving, provocable, and exploitive. It also has the capacity to become nice.
Finally, MAC is unrelievedly optimistic, for it is able to enlist mutual
defection in the service of perpetual mutual cooperation (see note 7). It

8. In shorter games, such as those conducted by Axelrod, MAC’s initial number of random
moves would be reduced proportionately.
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therefore embodies the precept that, in certain circumstances, the game-
theoretic end may well justify the game-theoretic means.

A final word of caution: Owing to MAC'’s exploitiveness, any translation
or implementation of MAC in the context of a social, economic, or political
prisoner’s dilemma could have undesirable repercussions.
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