daig

INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE, VOL. 10, NO. 3, 1996 217

How Braess’ paradox solves Newcomb’s
problem: not!

Louls MARINOFF
Department of Philosophy, The City College of the City University of New York, USA

‘For what is the Heart, but a Spring; and the Nerves, but so many Strings...”
(Hobbes, 1651, Introduction to the Leviathan)

Abstract In an engaging and ingenious paper, Irvine (1993) purporis 1o show how the
resolution of Braess’ paradox can be applied to Newcomb’s problem. To accomplish this end,
Irvine forges three links. First, he couples Braess’ paradox to the Cohen-Kelly queuing paradox.
Second, he couples the Cohen-Kelly queuing paradox to the Prisoner’s Dilemma (PD). Third,
in accord with received literature, he couples the PD to Newcomb’s problem itself. Claiming that
the linked models are “structurally identical”, he argues that Braess solves Newcomb’s problem.
This paper shows that Irvine’s linkage depends on structural similarities—rather than identi-
ties—berween and among the models. The elucidarion of functional disanalogies illuminates
structural dissimilarities which sever that linkage. I claim that the Cohen-Kelly queuing
paradox cloaks a fine structure that decouples it from both Braess’ paradox and the PD
(Marinoff, 1996a). I further assert that the putative reduction of the PD to a Newcomb
problem (e.g. Brams, 1975; Lewis, 1979) is seriously flawed. It follows that Braess’ paradox
does not solve Newcomb’s problem via the foregoing and herein sundered chain. I conclude by
substantiating a stronger claim, namely that Braess’ paradox cannot solve Newcomb’s problem
at all.

1. Structural similarities among four models
Braess’ paradox

Braess’ original paradox (1968), set in the context of general transportation networks,
illustrates that additional carrying capacity can lead to more costly travel for all. Cohen
& Horowitz (1991) introduce both mechanical and electronic models of Braess’ prob-
lem. Irvine (1993) selects the mechanical model for his linkage. Figure la depicts a
network of identical, ideally massless and perfectly elastic springs (81, $2) connected by
a massless and perfectly inelastic string (L). A suspended mass (M) extends the network
to an equilibrium length (H1). Note the additional pair of identical strings (L1, L2) of
sufficient length so as to remain slack when attached as shown.

The question is: if L were cut, would the resultant equilibrium length (H2) raise or
lower mass M with respect to its previous position? The answer is: it depends. Although
one’s intuition might proclaim that the new position of M would surely be lower than

0269-8595/96/030217-20 © Inter-University Foundation



218 L. MARINOFF

(a) (b)

Figure 1. Braess’ paradox.

the old, in fact the new equilibrium length of the network can be greater than, less than,
or equal to the previous length. In both configurations, equilibrium extension depends
upon the relative values of systemic constants—the unstretched spring-length (S), the
spring-constant or modulus of elasticity (K), the string-lengths (L, L1, L2), the local
gravitational constant (g), and the upon the variable mass. Explicitly,

H1 =L+ 28+ 2Mg/K
H2=L1+ S+ Mg2K

Thus

H2> H1 iff (L1 — L) > (S + 3Mg/2K)
H2 < H1iff (L1 — L) < (S + 3Mgl2K)
H2=H1iff (L1 — L) = (S + 3Mgl2K)

If the unstretched spring is sufficiently long, the spring-constant sufficiently large,
and the difference in string-lengths sufficiently small, then the suspended mass will
ascend, not descend, when the central string is cut. As Irvine rightly points out, this
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result is not at all paradoxical; merely counter-intuitive. If your intuition misinformed
you that the mass would necessarily descend, it did so by maintaining consistency with
an implicit but unsound assumption: namely, that the suspended mass produces the
same extension of the springs in both configurations. In fact, it does not. In Figure 1a,
each spring bears the full weight (Mg) and therefore sustains the full resultant extension
(Mg/K); whereas in Figure 1b, each spring bears only half the weight (Mg/2) and
therefore sustains only half the resultant extension (Mg/2K). As Irvine says, once we
appropriately modify our background assumption(s), we accordingly dispel the counter-
intuition.

Many so-called “paradoxes” (e.g. Zeno’s, Bertrand Russell’s, Allais’) have been
similarly resolved (e.g. Marinoff, 1994). These problems do not entail contradictions;
they only appear to do so in light of unsound or incompatible background assumptions
which require, and which eventually receive, appropriate modification. It remains an
open question whether every paradox can be similarly resolved. If so, then “paradox” is
only an apotheosized synonym for an inconsistent set of premises (e.g. Sorensen, 1988).
If not, then our faculties of speech and reason both humble and torment our cherished
illusion of understanding.

The Cohen-Kelly queuing paradox

The Cohen-Kelly queuing paradox appears as a particular variation on Braess’ general
theme. Cohen & Kelly (1990) (and Cohen and Horowitz (1991), and Kelly (1991)
represent Braess’s (1968) paradox as “a more general property of congested flows” in
a transportation network. The paradox arises because the addition of an alternative
route through a congested network appears to increase, rather than decrease, mean
transit time through the network. In this context, “congested” and “non-congested” are
technical terms. A non-congested network is one “in which the cost for traversing an arc
is independent of the number of users on that arc” (Steinberg & Zangwill, 1983);
similarly, a congested network is one in which the cost of traversing an arc is dependent
upon the number of users on that arc.

In the initial queuing network, depicted in Figure 2a, clients (e.g. travellers,
customers, messages, jobs, etc.) enter at node A. The single incoming stream is a
Poisson flow, and the two outgoing streams are independent Poisson flows. The network
contains two kinds of servers: FCFS (first-come-first-served) and IS (infinite-server).
The delay incurred at an FCFS server is a (convex) function of traffic flow to that server;
i.e. clients are queued and processed in sequence. Explicitly, the mean FCFS delay time
is 1/(b — x) units, where & is a systemic constant and x is the rate of flow (6> x> 0). The
delay incurred at an IS server is independent of traffic flow to that server; i.e. clients are
not queued but instead are processed in parallel. Explicitly, the mean IS delay time is
a units, where a is another systemic constant. To reach the exit at F, clients must travel
via one of two routes: either ABCF, or ADEF.

In the augmented queuing network, depicted in Figure 2b, an additional IS server,
with an associated mean delay time of @/2 units, is placed between and linked to the two
FCFS servers. This affords clients an alternative route through the network, namely
ABGEF. Since each client seeks to minimize individual transit time, whether in light or
in spite of collective traffic flow, the augmented network can be viewed as an N-player
non-cooperative game.

Cohen & Kelly (1990) show that, under certain conditions, mean transit time
through the augmented network is strictly larger than mean transit time through the
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Figure 2. Cohen-Kelly queuing paradox.

initial network. In this section I offer a more succinct and also more general proof of
their theorem. Following Cohen & Kelly, I denote the total traffic arriving at node A as
2x units of flow, and assume that 2x>b—1>x>0.

In the initial network, let the Poisson flow through ABCF be y. Thus the flow along
ADEF is 2x—y. The mean transit times through these branches are, respectively,
1/(b—y) +a and 1/[b— (2x —y)] + a. At equilibrium, clients distribute themselves such
that their mean transit times are equal, from which it follows algebraically that y = x.
This result, which is also intuitively obvious, gives the mean transit time through the
initial network as 1/(b—x) + a.

There are three possible routes through the augmented network: ABCF, ADEF,
and ABGEF. Again, assuming an equilibrium condition, mean transit times along all
routes are equal (although in this case the flows are not). As before, let the Poisson flow
along AB be y. Then the mean transit time along ABCF is 1/(b—y) +a. From the
equilibrium assumption, the mean transit times along routes ABCF and ADEF are
equal. So the mean transit time along ADEF is also 1/(b —y) + a. Since the flow along
ADE is 2x — v, it follows that the flow along BGE must be 2(y — x), which yields the
necessary algebraic sum y for the flow through server E.

To prove the theorem, it is sufficient to observe that since 2(y — x) (the traffic flow
between servers B and E) is by definition greater than zero, and since x> 0, therefore
y>x. It follows that

/b—y)+a>1/(b—x)+a

or, in other words, that the mean transit time through the augmented network is strictly
greater than that through the initial network.

Irvine links this and the foregoing model by graphical representation; that is, by
direct mapping of components: he allows that IS gates correspond to strings, FCFES
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Figure 3. Prisoner’s dilemma.

gates to springs, mean travel times to equilibrium extensions, and items of traffic to units
of downward force. The addition of the alternative route in the augmented network,
which leads to increased mean travel time, similarly corresponds to the addition of the
central string, which under appropriate conditions increases the equilibrium extension of
the mechanical apparatus. Thus the first link is forged.

The Prisoner’s Dilemma

The PD is perhaps the paradigmatic non-cooperative game, characterized by a payoff
matrix whose strong transitive ordering has spawned a gargantuan literature that spans
game theory, evolutionary biology, social psychology, sociology, economics, political
science, ethics, computer modeling and rational choice theory. Figure 3a depicts the
generic two-player PD. The fundamental tension in the original two-player model arises
because the dominance strategy dictates that row player is better off defecting regardless
of column player’s choice. Owing to symmetric payoffs, the converse prescription also
obtains. Hence both players defect, to their mutual detriment. Mutual defection results
in the attainment of a so-called “Nash equilibrium”, a state such that neither player can
realize a better payoff by making a different choice, given that the other player does not
make a different choice. Then again, assuming a sufficient degree of probabilistic
dependence, the strategy of maximizing expected utilities prescribes that each player
cooperate. Mutual cooperation results in the attainment of a so-called “Pareto efficient”
(or “Pareto optimal”) outcome, a state which confers the best aggregate payoff.

The PD can readily accommodate multiple pairs of players (a possibility that has
engendered strategic competition in computer tournaments, e.g. Axelrod, 1980a,
1980b, Marinoff, 1992, 1996b). It can also accommodate an undifferentiated horde of
players. Hobbes’s (1651) state of nature, Hume’s (1729) meadow-draining experiment,
Hardin’s (1973) tragedy of the commons, Pettit’s (1986) free-riding scenario, and
Glance’s & Huberman’s (1994) office luncheon are exemplary many-player PDs.

From an egoistic disposition, each player in a many-player PD can view himself as
arrayed against a collective opponent, a Leviathanesque corpus compounded of all the
other players. In such a game, entries in the payoff matrix are not constants; rather, are
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partial functions of the proportion of cooperators or defectors in the player population.
Prompted by Irvine (1993), I have developed one plausible family of such functions,
which consistently extends the maximization principle from the two-player to the
many-player case (Marinoff, 1996c). It does so on the assumption that maximizing
expected utilities prescribes that the lone player cooperate just in case sufficient numbers
of other players also cooperate. One determines the minimum sufficient number, or
threshold frequency of cooperation, as follows.

Availing oneself of the arbitrarily-fixed zero-point of the ordinal scale on which the
payoffs are expressed, one chooses S=0, and T=R+ P (see Figure 3b). In the
two-player case, one posits a probability of conditional cooperation: call it x. Maximiz-
ing expected utilities on this schema yields EUC = xR, EUD = (1 —x)(R+ P) + xP.
Letting ¢ stand for the quotient /R, it follows that MEU prescribes cooperation if
x> (1+¢)/2. In the many-player case, one assumes that each of »n other players
cooperates with some probability x (either uniform or uniformly averaged over n). Now
the lone player evaluates probabilities of cooperative proportions in the opposing
population, such that MEU prescribes cooperation only if the proportion of probable
cooperators exceeds the required threshold (1 + ¢)/2.

Given that one knows the number of other players (n) and their average probability
of cooperation (x), one can readily determine whether the threshold frequency is
exceeded. The probability that k of n players cooperate is the product of (1) the number
of possible states of & cooperative players (i.e. combinatorially distinct states), and (2)
the probability that each state obtains. Thus:

p(f) = (Wpe
Explicitly:

p() = x"(l =gt

Similarly, the probablllty that 2+ 1 other players cooperate is:

n!
(B+DIn—%k—1)!

Now, if & is the smallest integer such that f, > (1 + ¢)/2; that is, the smallest integer such
that k/n> (1 + ¢)/2, then:

PN =pf) +p(fe+1) + ... +p(f)
that is:

P(fer1) = 2 A

p() = 2 (1 =)
= 3 J)

Irvine’s linkage between the N-player PD and the Cohen-Kelly queuing paradox is
straightforward. Obviously, they both belong to the class of many-player, non-coopera-
tive, non-zero-sum games of imperfect information. The shared taxonomy entails a
functional analogy. In the Cohen-Kelly problem, the best possible payoff obtains for a
given individual just in case all the others choose the initial routes, while that individual
alone chooses the augmented route [on the assumption that a> 2/(b — x)]. In the PD,
the best possible payoff obtains for a given individual just in case all the others cooperate
while that individual defects. Choosing the initial route is thus analogous to cooperation;
the augmented route, to defection. In both models, individual defection is strongly
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Figure 4. Newcomb’s problem.

dominant, yet in both models, mass defection leads away from Pareto-efficiency and
toward Nash equilibrium. Thus the second link is forged.

Newcomb’s problem

Since its original articulation by Nozick (1969), Newcomb’s problem has engendered a
rich, philosophical literature. In its generic formulation, an arbitrarily lengthy but finite
succession of humans play one at a time against an arbitrarily wealthy and uncannily
prescient demon. Each human player is confronted by both a transparent box which
contains $1000, and an opaque box that will subsequently contain either 1 million
dollars or else nothing. The moves are made in strict sequence. First, the demon
predicts whether the human player will choose the contents either of the opaque box
alone, or else of both boxes. If the former prediction is made, the demon places 1
million dollars in the opaque box; if the latter, nothing. The human then chooses either
the contents of the opaque box alone, or else of both boxes. A caveat: the human is
aware that arbitrarily many humans have already played this game, and that the demon’s
frequency of correct prediction is arbitrarily close to unity. The payoff matrix is depicted
in Figure 4.

As Figure 4 illustrates, the payoff structures of Newcomb’s problem and the PD
share the same strong transitive ordering. Choosing both boxes is analogous to defecting
and, once again, defection is strongly dominant. Similarly, choosing the opaque box
alone is analogous to cooperating and, given the demon’s outstanding predictive
performance, maximizing expected utilities prescribes cooperation (but not unequivo-
cally). Albeit with varying justification, contributors to the debate on this problem are
known, in a predictable vernacular, as either “one-boxers” or “two-boxers”.

The standard, simplistic but plausible principle that prescribes choosing both boxes
is dominance, here reinforced by causality. Choosing two boxes strongly dominates
choosing one box only. Moreover, given the rigid temporal succession of moves,
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choosing both boxes can neither cause the demon to refrain from placing the million in
the opaque box, nor cause the demon to remove the million from the opaque box, in
the event that it wrongly predicted the player’s choice and placed the million therein. At
the same time, choosing one box alone cannot cause the demon to place 1 million in it,
just in case it predicted wrongly and refrained from doing so.

The standard, simplistic but plausible principle that prescribes choosing the opaque
box alone is maximizing expected utilities, here reinforced by evidentiality. Given the
demon’s successful prediction rate, the margin of prescription is convincingly wide. Let
the demon’s relative frequency of correct prediction be x. Assume that the utility of
money is linear in its amount. Then the expected utilities are:

EUl =xM; EU2=(1 —x)(M+ T) +xT
In order that choosing one box be prescribed, EU1 must exceed EU2. Thus:

xM=>1—x)(M+T)+xT
x>(1+ TIM)/2
x>0.5005

But given that x is arbitrarily close to unity, x far exceeds this threshold. Thus, choosing
one box is forcefully prescribed. Note that the demon’s high frequency of correct
prediction lends apparent evidentiary support to the subjunctive conditional proposition
that, if a player were to choose only the opaque box, then it would contain 1 million
dollars.

Then again, it has been shown by Lewis (1976) that conditional probabilities are
not in general equal to probabilities of conditionals, and by Levi (1974) that conditional
probabilities are not in general equal to converse conditional probabilities. It transpires
that alternative formulations of the expected utility calculus—for instance by Gibbard &
Harper (1978), Eells (1982), and Jeffrey (1983)—can lead to prescriptions which
converge with that of dominance; i.e. which suggest taking both boxes. The relevance
of such formulations to Newcomb’s problem has been ably challenged by Horwich
(1987) and Price (1986, 1991), who save the catholic one-box evidentiary picture from
two-box reformation. But these developments do not resolve the theoretical debate; they
rather shift its ground to issues involving the underdetermination of decision theory by
counterexample. Such issues are important, but tangential to this treatment.

Empirically, Nozick (1969) reports that people’s preferences seem to divide about
evenly with respect to these conflicting principles of choice. One each occasion that I
have presented this dilemma to a class of students, I have found a similar distribution
of choice. It also turns out, as Nozick remarks, that each group usually deems the other
mistaken or even foolish for adhering to its respective principle.

The linkage between the N-player PD and Newcomb’s problem is well-rehearsed
in the literature. Notably, both Brams (1975) and Lewis (1979) have argued that the PD
is actually two Newcomb problems, running simultaneously and in parallel. Each
prisoner, in effect, is engaged in a separate Newcomb problem, because each prisoner
can (and possibly should) suppose that the other has already made his choice. This is
not to assert the temporal impossibility that both prisoners choose first; rather, to assert
the logical possibility that each supposes the other to have chosen first. In brief, the
claim that the PD is equivalent to two Newcomb problems is supported by their
common payoff structures, and by similarly conflicting prescriptions of the relevant
principles of choice. Thus the third link is forged.

Having coupled the four models, Irvine’s argument approaches its conclusion:
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...why is it that in the case of Newcomb’s problem the argument from expected
utility appears persuasive?...why is it that it is regularly those players who avoid
dominance who obtain the largest payoffs?... The answer is a simple one....it is
to deny that, over the long run, it will continue to be those who avoid
dominance, or who fail to defect, who will continue to receive the largest
payoffs...the solution to Newcomb’s problem...involves an important
modification to our original background assumptions...we simply abandon the
(false) assumption that past observed frequency is an infallible guide to
probability and, with it, the claim that Newcomb’s problem is in any sense a
paradox of rationality...The solution to the problem is simply to deny that
selecting box B [the opaque box] alone in any way affects or is indicative of the
probability of its containing $100,000 [$M]. Similarly in the case of the
prisoner’s dilemma, the solution is to deny that a single prisoner’s failure to
defect in any way affects or is indicative of the likelihood that other prisoners
will also defect. Similarly in the case of the Cohen-Kelly queuing network, the
solution is to deny that a single traveller’s failure to select route ABGEF in any
way affects or is indicative of the likelihood that other travellers will do the
same. Such outcomes are no more likely in the case of Newcomb’s problem,
prisoner’s dilemma, or the Cohen-Kelly queuing paradox than they are in the
case of Braess’ paradox. Which is to say, they are not likely at all.

2. Functional disanalogies among four models
Braess’ paradox revisited

We are dealing here with an idealized deterministic system, whose state of extension is
always unambiguously specifiable in terms of physical constants (i.e. string lengths,
unstretched spring lengths, moduli of elasticity, a gravitational constant) and a single
variable, suspended mass. Note also that the network is subject to some fixed carrying
capacity, which if exceeded by the suspended mass would result in a broken string or
a deformed spring. Thus, in order to maintain the network’s integrity, we demand that
the suspended mass not exceed a certain threshold, whose value is determined not by
explicit systemic constants, rather by intrinsic physical properties of systemic compo-
nents.

Adopting Irvine’s analogy, we begin to introduce units of mass into the system.
Imagine that the strings and springs consist of hollow tubes, through which one drops
a succession of marbles. They enter the system at the top, and roll down to the bottom,
where they accumulate as a collective suspended mass. The “path” taken by each
marble is represented precisely by the increase in tension that it effects in a given branch
of the network. All possible tensions in the network—and hence all possible extensions
produced by them—are sufficiently described by a set of three independent equilibrium
equations, one pertaining to each branch (see Figures 5a and 5b):

{(T+ T1=KAS2), (T+ T2 = KAS2), (T+ T1+ T2 = Mg)}

Note that for each unit of mass so introduced, the system reacts by attaining a static
equilibrium extension such that these equations are simultaneously satisfied. Although
the conformation of the network is admittedly unusual, the fundamental laws of statics
are neither compromised nor violated by it.

A closer examination of these systemic equations reveals that it is physically
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Figure 5. Braess’ problem revisited.

impossible for all three branches to be simultaneously loaded. Specifically, given that L1,
L2> L, an initial accumulation of suspended mass creates tension only in the central
branch through L. As long as L is taut, L1 and L2 necessarily remain slack. Eventually,
a sufficient accumulation of suspended mass stretches the springs enough to necessitate
the transfer of tension to L1 and L2, whereupon they become taut while L necessarily
reverts to slackness. There is no balance point such that tension is distributed throughout.
In consequence, while every aggregate mass produces a corresponding static equilibrium
extension, no aggregate mass can produce an extension such that all branches are
simultaneously under tension.

Thus we already have a prima facie rebuttal of the thesis that Braess’ paradox “solves”
Newcomb’s problem. For every unit of mass introduced into Braess’ network, the branch
along which it produces tension is strictly determined by the aggregate accumulated mass
(in light of systemic constants). Physical determination repudiates Irvine’s implied denial
that a single unit of mass’s failure to produce tension in a given branch “in any way
affects or is more indicative of the likelihood” that other units of mass will do the
same. In fact, if a single unit of mass fails to produce tension in the central branch
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Table 1. Cohen-Kelly queuing paradox revisited

State of Network: Specification: Minimum Mean Transit Time: Traffic Pattern:
Underpopulated x<b-2/la Lesserof: 1/b+aor 2/b+ a/2 Free-flowing
Sparsely-populated x<b-2/a 1/(b—y) +a=3a/2 (y = b-2/a) Nash equilibrated
Modulated x=b2la 1/(b—x)+a=3al2 (y=x) Pareto-efficient
Densely-populated x>b-2/a  Possibly: 2/(b—x) + a/2 or 1/(b—2x) + a Indeterminate
Overpopulated x>b-2/a None (all routes clogged) Arrested flow

of Braess’ network, then it is a matter not merely of likelihood, but rather of certainty,
that every subsequent unit of mass must similarly fail. But while Irvine (like Hume)
denies that observed frequency is an infallible indicator of future likelihood, he (unlike
Hume) does not assert that physical necessity is a fallible indicator of future certainty.
Yet this is implied by his ultimate linkage between Braess’ and Newcomb’s problems.
Leaving that on one side, we proceed to refute the putative structural identity of Braess’
model and the Cohen-Kelly queuing paradox.

The Cohen-Kelly queuing paradox revisited

If the two models are, as Irvine claims, “structurally identical”, then they ought to be
functionally analogous. But while Braess’ network cannot sustain simultaneous non-zero
tensions in all its branches, the augmented Cohen-Kelly network can obviously tolerate
simultaneous non-zero transit times along all its routes. Thus they are not functional
analogues. Since tensions and transit times (effected respectively by items of mass and
numbers of travellers) turn out to be functionally disanalogous, the models cannot be
structurally identical. They are merely graphically—and perhaps topographically—simi-
lar. This observation suffices to sever the first link.

The Cohen-Kelly model itself embodies a peculiar functionality that bears further
discussion (see Marinoff, 1996a). We can specify five different densities of traffic flow
in terms of given systemic constants. Each of these five densities is indicative of a
distinct state of the augmented network, with which we can associate a minimum mean
transit time and a characteristic traffic pattern (see Table 1).

We begin with an unpopulated system, and gradually introduce traffic at node A.
We assume that all travellers entering node A know both the instantaneous rate of flow
at that node (call it 2x) and the current state of the network itself. In the first case,
x<<b—2/a. I term this state “under-populated”, because traffic flow along all branches
is non-zero but negligible. A traveller can minimize mean transit time simply in
accordance with systemic constants. In the second case, x<<b— 2/a. I term this state
“sparsely-populated”, because the flow is non-negligible but strictly less than a certain
critical value. There are compelling reasons for asserting that traffic in this state would
divide along all three routes such that the mean individual transit times will be equal but
not minimal (Cohen & Kelly, 1990; Marinoff, 1996a). This state thus gives rise to the
Nash equilibrium; Cohen & Kelly subsume their treatments completely under it. (For
re-emphasis, I repeat that a corresponding equilibrium cannot be attained in the
spring-and-string analog of Braess’ model.)

But if we continue to increase traffic flow, a surprising thing happens: the very
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condition that sustains the Nash-equilibrated state suddenly transforms it into a
Pareto-efficient state. Note that the rate of flow through node G is necessarily 2(y — x);
the traffic must divide in this way to equalize mean individual transit times in the
sparsely-populated state. The value of ¥ remains constant; it is a function of systemic
constants (y= b — 2/a). Now let us increase the traffic flow until x = b — 2/a. But now x
equals y, and consequently there is zero traffic flow through node G. I term this state
“modulated”, because x is tuned to y. The significance of the modulation should be
clear: traffic divides evenly between the two external routes, and Pareto-efficiency is
therefore attained. The mean individual transit time in the modulated state is in fact the
same as that in the sparsely-populated state, although traffic flow in the latter state is by
definition greater than that in the former. The sudden but algebraically necessary
emergence of Pareto-efficiency from Nash equilibrium is a counter-intuitive result
indeed.

If we now increase traffic flow such that x > b — 2/a, Pareto-efficiency itself gives
way to decision-theoretic indeterminacy, and does so with similar suddenness and force
of algebraic necessity. I term this state “densely-populated”, because the flow is now
greater than the previous critical value. The densely-populated state conceals a counter-
intuition of its own: while Pareto-efficiency is theoretically attainable (just in case all
traffic divides evenly between the two external routes), Nash equilibrium is demonstra-
bly unattainable. Recall that a necessary condition of Nash equilibrium is that flow
through node G equal 2(y — x). But in the densely-populated state, x is greater than y.
Hence, for a Nash equilibrium to occur in this state, traffic flow through node G would
have to be negative. If we attempt to reinterpret negative traffic flow as backward traffic
flow (a la Feynman), we will be hoist with a Newtonian petard: backward traffic flow
would necessarily elapse in negative time, and the associated equations would assert that
travellers can reverse time’s arrow merely by driving in reverse along particular routes.
While backward time-travel on select closed curves remains a Godelian possibility (e.g.
see Savitt, 1994), the foregoing methodology—namely driving in reverse gear—will not
reliably allow you to arrive home from the office prior to your departure from it: on the
contrary. It follows that there is no Nash equilibrium in the densely-populated state and,
because of this, there is no characteristic traffic pattern either. For travellers in this state,
decision theory is prescriptively mute.

If we continue to increase traffic flow until x> b — 2/a, we enter the “over-popu-
lated” state, in which decision theory is once again prescriptive but now useless. Since
all routes are clogged, traffic flow is arrested. There is no mean minimum transit time
at all.

The N-player PD revisited

In the N-player PD—in stark contrast to the Cohen-Kelly model—we find no constraint
on the possibility of mass defection as the number of players increases. For any N
players in a PD, it is always possible that all, or very nearly all, will defect. The Nash
equilibrium is therefore always attainable in a PD (whether it is attained or not).
Moreover, unlike the Cohen-Kelly model, the PD entails no modulated state, such that
Pareto-efficiency necessarily emerges from the Nash equilibrium, and is itself necessarily
superseded by indeterminate patterns of choice, as the number of players continues to
increase. In sum, the specification of traffic patterns according to graduated flows in the
Cohen-Kelly queuing paradox has no analogue in the N-player PD. This functional
disanalogy arises from structural non-identity; thus the second link is severed.
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I proceed directly to sever the third and final link, by offering two independent
arguments which refute Brams’s and Lewis’s claims that the PD is a Newcomb problem,
or rather is two Newcomb problems side-by-side. Lewis’s version has permeated the
philosophical literature without much serious opposition. A noteworthy dissenter is
Sobel (1985), who argues that not every PD is a Newcomb problem, but in so doing
assents that some are. My claim is stronger than Sobel’s, and cedes no ground: no PD
is a Newcomb problem.

I begin with two uncontroversial if not incontrovertible premises: first, that all
rational players in the PD share similar interests—at least with respect to obtaining the
better payoffs and avoiding the worse; and second, that the interests of the players and
the demon in Newcomb’s problem are distinctly dissimilar. In Newcomb’s problem, all
rational players still wish to obtain the better payoffs and avoid the worse, whereas the
poor but far from impecunious demon reaps no payoffs whatsoever, except in the
normally pejorative sense of paying out. Yet the demon remains indifferent to losing
money; it is both fabulously wealthy and supremely disinterested in how often it may be
compelled by the rules to shell out thousands and perforce millions of dollars. However,
the demon does maintain one abiding interest, and that lies in sustaining a high
frequency of correct predictions.

The first argument is meta-game-theoretic. It seems not generally well-known, or is
perhaps largely ignored, that the two-player PD actually admits of a “solution”, if by
solution we understand an analysis that impels players away from the Nash equilibrium
and toward the Pareto-efficient outcome. Here is a synopsis of Rapoport’s (1967)
presentation of Howard’s meta-game solution, which I transpose from a two-player to
an N-player mode.

Let the lone player have four strategies: 4;, cooperate unconditionally; 4>, choose
expected majority choice; A3, choose complement of expected majority choice; and A,
defect unconditionally. These give rise to the second-order game depicted in Figure 6.
As the matrix shows, unconditional defection is weakly dominant for the lone player.
Defection is therefore meta-dominant for the » other players. Thus the lone player
defects, and a Nash meta-equilibrium persists at [As,d].

In the third-order game, each of the »n other players generates 16 meta-strategies,
which represent all possible combinations of responses to the concatenated string of the

Lone Player

A, A, A,y A,
c R.R R.R S.T ST
n Other
Players
d T,S PP T8 PP

Figure 6. PD revisited: first-order metagame.
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A, A** A, A*
CCCCx R,R R,R S,T S, T
CCCDx R,R R,R S,T P.P
CCDCx R,R R,R T.S 3
CDCCx R.R P,P S.T ST
DCCCx T,S R,R S, T S, T
CCDDz R,R R,R TS P,P
CDCDx* R,R P,P S,T P.P
DCCDx TS R,R 5T P.P
CDDCx R,R P,P TS o
DCDCx TS R,R T S,T
DDCCx TS5 P.P S,T S,T
DDDCx s P,P T.S S, T
DDCDx T,S P.P S,T P,P
DCDDz** T.S R.R .8 P,P
CDDDy R.R P.P T.S P.P
DDDDy § ) P,P T,S P.P

Figure 7. PD revisited: second-order metagame.

lone player’s four strategies. This third-order game is depicted in Figure 7 (in which C
means cooperate; D, defect). As the matrix shows, the lone player’s better strategies are
A; and A4, because both avoid the worst payoff (S) and enable the better payoffs (R and
T respectively). At first blush, A, is preferable.

Similarly, the n other players first eliminate all 12 meta-strategies tagged “x”, which
might confer the worst payoff (S) on them. Then, knowing that the lone player’s better
strategies are A, and A4, they eliminate the two meta-strategies tagged “y”, which both
confer the second-worst payoff (P). By default, there remain the two meta-strategies
tagged “z”, of which the second is weakly dominant. Thus the n other players (or a
majority of them) choose meta-strategy DCDD.

Knowing this, the lone player chooses strategy A,, which now dominates A4. That
is, the lone player chooses as he expects the majority to choose, and cooperates. The
Pareto-optimal outcome obtains at [DCDD, A4]. Moreover, Howard allegedly proves
that there is no re-emergence of the Nash equilibrium in any higher-order decision
space.

I applied Howard’s meta-game methodology to Newcomb’s problem and, initially
under the spell of Brams and Lewis, was predisposed to suspect that Howard’s results
would be replicated. The first-order meta-game for Newcomb’s problem confirms this
suspicion, as it leads to a similar impasse. Let the player have four corresponding
strategies: A4;, choose one box unconditionally; A,, choose as demon predicts; As,
choose not as demon predicts; and A4, choose both boxes unconditionally. Figure 8
depicts a situation of strong meta-dominance, in which the player prefers that the
demon predict that the player choose one box. But on the evidence of successful
prediction, the player must intend to choose one box in order to exercise this meta-
preference. At the same time, strategy A; (choosing both boxes unconditionally) weakly
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Player
A A, A, A,
predicts M $M $SM+3ST  $SM+ST
one box
Demon
predicts 80 $T 80 8T
both boxes

Figure 8. Newcomb’s problem revisited: first-order metagame.

dominates the other strategies, and causalists (e.g. Sorensen, 1988) claim that an
intention to take one box entails a decision to take both. Thus, as in the second-order
PD, the Nash equilibrium persists.

Foolishly disregarding the ghost of Hume, I immediately succumbed to the
inductive fallacy and became convinced that the third-order game would similarly yield
nothing new. But the conviction proved utterly unfounded. Although the expanded
matrix of the third-order Newcomb problem resembles that of the PD so closely that
one might be seduced into pronouncing them “structurally identical” on the basis of
inspection alone, meta-strategic analysis of the expanded Newcomb matrix follows an
unequivocal but functionally different route.

Consider Figure 9 (in which O means the opaque box; B, both). As in the PD, the
player might decide that A, or A4 is best. However, the player might reason further that
some meta-strategies are not in the demon’s interest. Specifically, the eight meta-
strategies tagged “x” reward the player just in case the demon will have predicted
incorrectly, so they are eliminable. (The demon’s interest in correct prediction arguably
entails a reluctance to reward players who falsify its predictions.) Of the remaining
options, the six meta-strategies tagged “y” result in correct meta-prediction frequencies
of only 1/4 or 2/4, and so are likewise eliminable. The two remaining meta-strategies
tagged “2”, namely OOBB and OBBB, are such that both they do not reward the player
just in case the demon will have predicted incorrectly, and they confer the highest
possible correct meta-prediction frequency, namely 3/4.

Given the demon’s two viable meta-strategies by default, the player observes that
strategy A; weakly dominates the other strategies, resulting in a payoff of $M. So the
player will choose one box unconditionally. As the demon need not strain its predictive
power to arrive at this conclusion, it places $M in the opaque box. This outcome is
Pareto-optimal, in that it gives the player a desirable payoff and affords the demon a
correct prediction.

But the two equivalent choices that generate this outcome, [OOBB, A;] and
[OBBB, A\], are functionally distinct from the sole choice that generated the Pareto-op-
timal outcome in the corresponding PD. So the PD and Newcomb’s problem are
functionally disanalogous, at least in third-order decision space. Yet functional disanal-
ogy implies structural non-identity, wherever it may be found.
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Ar A, A, A,
0000x  $M $M SM+ST  $SM+ST
OOOBx  $M $M $SM+ST ST
OOBOy  $M $M $0 $SM+$T
OBOOx  $M $T SM+ST  SM+ST
BOOOx  $0 $M SM+ST  SM+S$T
OOBBz* $M $M $0 $T
OBOBx  $M $T $SM+ST ST
BOOBx  $0 $M $SM+ST ST
OBBOy  $M $T $0 $M+ST
BOBOy  $0 $M $0 $SM+$T
BBOOx  $0 $T SM+ST  $SM+ST
BBBOy S0 $T $0 $SM+$T
BBOBx  $0 $T SM+ST ST
BOBBy  $0 $M $0 $T
OBBBz* $M ST $0 ST
BBBBy  $0 ST $0 ST

Figure 9. Newcomb’s problem revisited: second-order metagame.

The second argument speaks directly to first-order structural dissimilarities, instead
of merely implying them. We re-iterate that each player in the PD seeks to attain one
of the two better outcomes, and to avoid both of the worse ones. The same can be said
of each (human) player in Newcomb’s problem. This much follows from the identical
transitive ordering of the respective payoff structures. Identically-ordered payoff struc-
tures, however, do not imply identical games. Von Neumann & Morgenstern (1944,
p- 49) define a game as the totality of its rules, and one can here instantiate the sagacity
of that definition, which smacks of elegance rather than oversimplification.

Recall the demon’s sole abiding interest: making correct predictions. Now I ask
whether any player in either game maintains a similar interest. The player in Newcomb’s
problem apparently cannot do so, for the rules stipulate that this player is not a
predictor; rather, a predictee. If we allow the player to have an interest in making a
correct prediction about what the demon will predict concerning that player’s future
choice, then the demon’s prediction becomes a retrodiction concerning the player’s
prediction about the demon’s prediction about the player’s choice, which in turn obliges
the player’s prediction to concern itself with the demon’s future retrodiction about the
player’s prediction about the demon’s prediction about the player’s choice. To avoid an
infinite regress, we must deny that the player in Newcomb’s problem has any interest
in making correct predictions—or else he will never be able to make a prediction at all.

Do the players in a PD have any such interest? Here it turns out that they just
might, but if they do, it is not the same kind of interest as the demon’s. Contra Irvine’s
denial that past observed frequency is an infallible guide to probability stands the
frequentist position, championed by von Mises (1928), who asserts that probability has
no meaning other than observed limiting frequency. (Ineluctable fallibilities of von
Mises’ redux are somewhat mollified by margins of statistical confidence). But we need
not be drawn by the hoary debate between Bayesians and frequentists, at least not in this
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context. The classic PD treated herein rules out the frequentist interpretation altogether:
it is a non-repeated (or “one-shot™) affair, in which the players have no recourse to any
record of prior play. Their game has no history, and so has no observed relative
frequency of outcomes, and thus has no limiting frequency at all. For that matter,
neither do we require an observed frequency to run Newcomb’s problem, at least in its
early stages. The first player in any Newcomb sequence has no statistics on the demon’s
performance—and indeed the first few players have very poor ones—but still they may
harbor subjective degrees of belief, arbitrarily close to certainty, about the demon’s
predictive power.

A rational player in a PD seems committed either to the dominance principle, or
else to some personalist assessment of expected utilities. The latter entails holding a
subjective degree of belief—in short, making a prediction—about what the other player
will do. However, we can show that both disjuncts lead to a denial that the PD is a
Newcomb problem.

If either player is committed to the dominance principle, then by definition that
player defects regardless of the other player’s choice. If both players are so committed,
then neither player has any interest in predicting what the other will do, in which case
the PD is not a Newcomb problem.

If either player is committed to maximizing expected utilities, then that player must
posit a likelihood that the other will cooperate conditional on one’s own cooperation.
With respect to the functional calculus, this amounts to selecting some real number
from the continuous closed interval [0,1], which stands for the conditional probability
that the other will cooperate if one does. Note that this kind of prediction is quite
different from the demon’s. The demon does not select some real number from that
continuum to stand for the probability that the player will choose one box conditional
on the demon’s placement of 1 million dollars in it; rather, the demon assigns a
truth-value, a Boolean probability of zero or unity, to the proposition that the player will
choose one box (and assigns its complement to the proposition that the player will
choose both boxes). The rules stipulate clearly that the demon’s placement (or non-
placement) of the 1 million is contingent on the demon’s prediction; thus the demon’s
prediction cannot be conditional on its placement (or non-placement) of the 1 million.
Since the two kinds of prediction are not equivalent, the PD is not a Newcomb problem.

If one endeavors to finesse this argument by reducing conditional probabilization in
the PD to pure prediction, then one is trumped either by dominance or else by absence
of compulsion. Suppose that either player in the PD maintains an interest in predicting
unconditionally what the other will choose. If you predict that the other will defect, then
you must defect yourself to avoid incurring the worst payoff. But if you predict that the
other will cooperate, then you must choose whether to cooperate or defect yourself. You
incur the best payoff by defecting; but if you defect, then your interest in predicting the
other player’s choice was entirely vacuous, since you defected regardless of his choice.
But if you cooperate, you must account for not having defected, because you are
voluntarily relinquishing a larger payoff for a smaller. While such behavior in a one-shot
game is apparently irrational, its rationale can be salvaged by the introduction of some
auxiliary mitigating principle of choice. For instance, if convinced that the other player
will cooperate in a PD, you could readily invoke Hobbesian, Kantian, or utilitarian
arguments for cooperating yourself. But there is no rule in the PD which compels your
cooperation just in case you predict that the other player will cooperate. However, there
is a rule in Newcomb’s problem which compels the demon’s placement of 1 million
dollars in the opaque box, just in case the demon predicts that the player will choose
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that box alone. Since the functional consequences of a player’s prediction in a PD are
not equivalent to those of the demon’s prediction in a Newcomb problem, the two
problems are not structurally identical.

In fine, whether or not either player in a PD has interests in predicting the other
player’s choice, the PD is not a Newcomb problem.

Arguing that the PD is really two Newcomb problems side-by-side is analogous to
arguing that the human female chromosome is really two male chromosomes side-by-
side. Since the males are both XY, if we remove X from one and X from the other and
recombine them, we obtain an XX. But it does not follow that the female is structurally
or functionally identical to the male. Similarly, if we remove the human player from one
Newcomb problem and the human player from another Newcomb problem, and
recombine them in a new game with the same transitive payoff ordering, but with
different rules, we obtain a PD. But it does not follow that the PD is structurally or
functionally identical to a Newcomb problem. That they possess similar payoff
“structures” yields an equivocation, not an identity.

(And what of the two residual demons? Like a YY chromosome, which presumably
does not constitute a viable biological entity, two demons could not engage in a playable
game. Neither demon would be able to move, since each must first predict what the
other will do.)

Thus, the third link is severed and the chain is sundered. I have demonstrated that
Braess’ paradox is not structurally identical to the Cohen-Kelly queuing problem, which
in turn is not structurally identical to the N-player PD, which in turn is not structurally
identical to Newcomb’s problem. Thus Braess” paradox solves Newcomb’s problem:
Not!

3. A stronger claim, and a neo-Augustinian entreaty

In this final section, I should like to show something stronger: not merely how Braess’
paradox fails to solve Newcomb’s problem (via some linkage), but that Braess’ paradox
fails to solve Newcomb’s problem (via any linkage).

The mechanical analogue of Braess’ paradox has a deterministic albeit infinite
solution set of static equilibria; that is, an infinite set of steady-state solutions. For any
(real) number of units of mass suspended from the system within its carrying capacity,
the resultant tensions and extensions are predictable from systemic equations and
constants. If Newcomb’s problem does not admit of a deterministic steady-state solution
set, such that for any number of players the demon’s predictions and the players’
subsequent choices are similarly predictable from systemic equations and constants,
then Braess’ paradox cannot in any sense solve Newcomb’s problem. Since there is no
means extant by which we can predict the demon’s predictions, let alone the players’
subsequent choices, it appears that this stronger claim is substantiated.

Even if we modify Newcomb’s problem, with a view to contriving a steady-state
solution, we cannot guarantee its prolongation. Given the demon’s interest in making
correct predictions, further suppose that each player knows not only the demon’s
relative frequency of correctness, but also the precise distribution of prior outcomes. In
that case, it appears that the demon could impose a steady-state solution by repeatedly
placing nothing in the opaque box. After a negligible number of transient outcomes,
during which a few one-boxers would be sorely disappointed, all subsequent players
would surely choose two boxes, not because they are convinced that the demon has
predicted their choices, but because they are convinced that the demon has placed
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Demon
places $M does not place $M
in opaque box in opaque box
choose 0 10
opaque box
Players
choose 0 990
both boxes

Figure 10. Newcomb’s problem: steady-state outcome matrix.

nothing in the opaque box. The situation is depicted in Figure 10. Given the demon’s
high “predictive” success rate, maximizing expected utilities misleadingly prescribes
choosing one box only. Dominance (as it were, on the half-shell) prescribes choosing
both. But common sense dictates that the demon is predicting nothing; rather, that it
is pseudo-deterministically compelling a sequence of identical outcomes. You or I,
presumably lacking predictive powers, could play the demon’s role in such a game.

This pseudo-determinism, however, can be decisively undermined. For while the
demon must sustain an interest in making correct predictions, the players need not abet
the demon’s cause. If significant numbers of players were predisposed to martyrdom,
and began to choose one box instead of both, then the demon’s “predictive” success rate
would be compromised, and it would necessarily abandon its attempt to compel a
steady-state solution.

Moreover, the payoff structure of Newcomb’s problem precludes a pseudo-
deterministic compulsion of the complementary pure sequence; that is, precludes a
steady-state solution in which the demon repeatedly places 1 million dollars in box one,
and the players choose only that box. For were the demon to do so, and were each
player to inspect the associated matrix of previous outcomes, it seems plausible that
significant numbers of players would choose both boxes. But this in turn would
compromise the demon’s “predictive” success rate, and thus the pseudo-deterministic
steady-state would collapse yet again.

In conclusion, I have not claimed that Newcomb’s problem cannot be solved; only
that Braess’ paradox does not and cannot solve it. My modest but avowed task is
accomplished. Now let the more ambitious, who would ponder how Newcomb’s
problem can be solved, consider this caveat: an unequivocal solution has not been found
in the exclusive disjunction of one box or two. A rationally satisfactory but morally
unsavory solution may perhaps be found in a neo-Augustinian entreaty; not to the
demon, but to the uncognized source of those unknown laws from which the demon’s
formidable foresight flows. I offer you Augustine’s putative game-theoretic supplication:
“Make me a two-boxer, but not yet!”
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